The impact of saline mine water on fate of mineral elements and organic matter: The case study of the Upper Silesian Coal Basin
The work presented here provides a complex environmental impact of sediments in vicinity to the area of the former Lazy coal mine site in the Upper Silesian Coal Basin (Czech Republic). The main aim of this work has been to determine the degree of contamination, to describe the organic matter, and to carry out sorption isotherms to see the size and distribution of pores in the monitored sediments that are the crucial parameters to assumption of removal mechanisms of elements carried in mine water. The results show that the greatest enrichment of Mn, Sr, Ba, and was in sediments of the first tens of meters from the mine water discharge sediments. Ba and Sr were precipitated as mineral barite and thus formed a dominant insoluble component in the river sediments, which were further carried by water flow towards the water reservoirs. Predominant amounts of fossil material and smaller quantities of carbonized and recent organic matter were altered by weathering and erosion processes. The coal materials have a relatively beneficial sorption capacity, which increases with the carbon content. The overburden waste should be considered for use in removing heavy metals in-situ.
Publication:: Vöröš D., Řimnáčová D., Medvecká L., Geršlová E., Mercedes Díaz-Somoano M., (2021). The impact of saline mine water on fate of mineral elements and organic matter: The case study of the Upper Silesian Coal Basin. Chemosphere 284, 131397. DOI: 10.1016/j.chemosphere.2021.131397.
Graphical abstract
Further important publications and outputs
1. Machovič V., Havelcová M., Lapčák L., Mizera J., Sýkorová I., 2022. Chemical character and structure of uraniferous bitumens (Vrchlabí, Czech Republic). International Journal of Coal Geology doi.org/10.1016/j.coal.2022.104137
2. Havelcová M., Sýkorová I., René M., Mizera J., Coubal M., Machovič V., Strunga V., Goliáš V., 2022. Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic). Minerals 12, 544. doi.org/10.3390/min12050544
3. Mizera J., Havelcová M., Machovič V., Borecká L., Vöröš D., 2022. Neutron Activation Analysis in Urban Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague. Minerals 12, 281.doi.org/10.3390/min12030281
4. Vöröš D., Geršlová E., Šimoníková L., Díaz-Somoano M., 2022. Late Carboniferous palaeodepositional changes recorded by inorganic proxies and REE data from the coalbearing strata: An example on the Czech part of the Upper Silesian Coal basin (USCB), Journal of Natural Gas Science & Engineering doi.org/10.1016/j.jngse.2022.104789
5. Švábová M., Vorokhta M., 2022. Water sorption and transport in Silurian shales. Journal of Petroleum Science and Engineering 210 doi.org/10.1016/j.petrol.2021.109980
6. Suchý V., Zachariáš J., Sýkorová I., Kořínková D., Pešek J., Pachnerová-Brabcová, K., Qingyong Luo, Filip, J., Světlík, I., 2022. Paleothermal history of the Blanice Graben (the Bohemian Massif, Czech Republic): The origin of anthracite in a late-Variscan strike-slip basin. International Journal of Coal Geology, 263, 104, 104129, 1-23.
doi.org/10.1016/j.coal.2022.104129
7. Rasina M., Lusens M., Racek M., Přikrylová J., Weishauptová Z., Řimnáčová D., Přikryl R., 2022. Distinction between consecutive construction phases by combined microscopic study and quantitative pore space analysis: Case study of Horn’s Bastion, Riga Castle (Latvia), Journal of Cultural Heritage 57, 88-96. doi.org/10.1016/j.culher.2022.08.004
8. Purikova O., Tkachenko I., Smid B., Veltruska K., Dinhova T.N., Vorokhta M., Kopecky V., Hanykova L., Ju X.H., 2022. Free-Blockage Mesoporous Silica Nanoparticles Loaded with Cerium Oxide as ROS-Responsive and ROS-Scavenging Nanomedicine. Advanced Functional Materials 32, 2208316. doi.org/10.1002/adfm.202208316
9. Yakovlev Y.V., Rodríguez M.G., Lobko Y.V., Vorokhta M., Kúš P., Matolínová I., Matolín V., 2022. Characterization of gas diffusion layer transport properties by limiting current approach. Electrochimica Acta 404, 139755.
doi.org/10.1016/j.electacta.2021.139755
10. Darabut A.M., Lobko Y., Yakovlev Y., Gamón Rodríguez M., Veltruská K., Šmíd B., Kúš P., Nováková J., Dopita M., Vorokhta M., Kopecký V., Procházka M., Matolínová I., Matolín V. 2022. Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite. Advanced Powder Technology (Just accepted)
11. Mizera, J., Řanda, Z., Suchý, V., Strunga, V., Klokočník, J., Kostelecký, J., Bezděk, A., Moravec, Z., 2021. Parent crater for Australasian tektites beneath the sands of the Alashan Desert, Northwest China: Best candidate ever?, in Foulger, G.R., Hamilton, L.C., Jurdy, D.M., Stein, C.A., Howard, K.A., and Stein, S., eds., In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science: Geological doi.org/10.1130/2021.2553(25)Society of America Special Paper 553, p. 323–334
12. René M., 2022. Investigation of accessory minerals from the Blatná granodiorite suite, Bohemian Massif, Czech Republic. In: René M. (ed.) Mineralogy, IntechOpen Ltd., London, 165–185.
List of publications 2022
List of publications 2021
List of publications 2020
Further publications in ASEPu database
|