PHASE EQUILIBRIA IN THE SYSTEM CaCr2O4 — CaFe2O4

VLADIMÍR AMBRÚZ, JAROMÍR HAVLICA, ZDENĚK PÁNEK

Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5, 809 34 Bratislava

Received 29, 11, 1979

The method of rapid quenching was used for determining phase conditions in the system $\rm CaC_{12}O_4$ — $\rm CaFe_2O_4$ in the temperature interval of 1280 to 1830 °C in air atmosphere. The positions of the solidus line were established precisely and the peritectic temperature was found to amount to 1830 \pm 10 °C. The probable course of the liquidus line was estimated on the basis of two experimentally obtained values.

INTRODUCTION

As a result of increasing demand for materials resisting high temperatures and corrosive environments, new compounds having high melting temperatures and suitable physical and chemical properties are sought. One of such compounds is calcium-chromite CaCr₂O₄ exhibiting a melting temperature of 2170 °C [1] and a high chemical resistance, which renders CaCr₂O₄ containing materials promising in the form of refractory lining in plants for processing liquid stell. Some patents [2]—[4] suggest the alpha form of calcium chromite as base material for cast refractories with outstanding thermomechanical and thermochemical properties.

No ternary diagram $CaO - Fe_2O_3 - Cr_2O_3$ has so far been published. The system belongs among those the phase composition of which depends considerably on partial pressure of oxygen in the ambient atmosphere. Formation of compounds of CaO with iron oxides and chromium at various oxidation degrees was dealt with in study [5] — [10].

Measurements in air atmosphere were carried out in the binary systems CaO—Cr₂O₃ [6—8, 14], Fe₂O₃—CaO [10], Cr₂O₃—Fe₂O₃ [11]. On the basis of thermodynamic analysis, Berezhnoy [5] plotted in the ternary diagram regions of co-existence of Fe₂O₃, CaFe₄O₅, CaFe₂O₄, Ca₂Fe₂O₇ and CaCr₂O₄. A section along the connecting line CaCr₂O₄—CaFe₂O₄ was published by the authors of [12]. This diagram, constructed on the basis of melting temperature of CaCr₂O₄ and CaFe₂O₄ and using the temperature of modification transformation $\alpha - \beta$ calcium chromite established in study [13] has been supplemented by Berezhnoy [5]. The latter author has used the data from the study by Phillips and Muan [10] who reported on incongruent melting of CaFe₂O₄. The temperature of $\alpha - \beta$ modification transformation (1570 °C) taken over by Ford and Rees [12] from study [13] had been determined in a reductive atmosphere. Study [14], verified modification transformation of $\alpha - \beta$ calcium chromite in air takes place at 1720 °C and decreases with decreasing oxygen content in the gaseous phase; it was therefore considered necessary to verify or revise the diagram suggested in paper [5].

The present study had the aim of determining the co-existence region of α and β calcium chromite, peritectic temperature and the co-existence region of α and β Ca(Cr, Fe)₂O₄ solid solutions and melt in air atmosphere, which may be of significance for evaluating the interaction of iron compounds contained in slag with refractory

lining of technological plants.

EXPERIMENTAL

The phase equilibria were studied by the static method based on rapid quenching of samples. The samples were heated at selected temperature levels within the interval of 1280 to 1830 °C. Samples of CaCr₂O₄ with graded contents of 3 to 90 mole % CaFe₂O₄ were prepared. The mixtures were prepared from 1 M solutions of calcium nitrate, ferric nitrate and ammonium bichromate (A. R., Lachema, N. C.) in the respective proportions. After evaporation and heating at 1150 °C in air atmosphere the substances obtained were compressed into pellets under a pressure of 10 MPa. The pellets were heated in platinum crucibles in air atmosphere for 4 hours. A furnace with molybdenum winding was used in the experiments. Heating at temperature exceeding 1700 °C was carried out in a type 10-2068 CENTORR furnace. The temperature was measured by PtRh 18 (Safina) and Ir-Ir40%Rh60% (Heraeus) thermocouples, which had been calibrated at melting points of gold, palladium and platinum. After rapid quenching the samples were analyzed by X-ray diffraction, microscopically and by means of the JXA-5A electron microanalyzer.

Table 1 The experimental results

Exp. No	Temperature °C	CaFe ₂ O ₄ content, mole %	The phases present*
1	1280	90	β_{ss} , L
2	1280	80	588
2 3	1310	90	β ₈₈ , L
4	1310	80	Ses
5	1340	90	β ₅₆ , L
6	1340	80	β _{ss} , L
7	1340	70	β.88
8	1380	90	eta_{ss} L
9	1450	60	β_{ss}
10	1460	60	β_{ss} , L
11	1460	80	eta_{ss}, \mathbf{L}
12	1600	40	$eta_{ ext{ss}}, ext{L} \ eta$
13	1710	0	β
14	1720	5	Bss
15	1720	20	ßss
16	1730	0	α
17	1780	5	α_{ss} , β_{ss}
18	1780	10	β ₈₈
19	1780	20	β _{ss} , L
20	1810	10	β_{ss} , α_{ss}
21	1830	3	αss
22	1830	5	α_{ss} , β_{ss} , L
23	1830	10	α_{ss} , L, β_{ss}

^{*)} β_{ss} — β Ca(Cr,Fe)₂O₄, α_{ss} — α Ca(Cr,Fe)₂O₄, L — melt

THE RESULTS AND DISCUSSION

Data from literature [1], [12] and [14] and the experimental results were used for constructing for $p_{02} = 0.021 \,\mathrm{MPa}$ the pseudobinary diagram shown in Fig. 1. The system is characterized by the formation of a continuous series of solid solutions

composed of β -CaCr₂O₄ and CaFe₂O₄ as a result of the similarity of the structures [15]. As indicated by the phase diagram obtained by substitution of Fe³⁺ ions for Cr³⁺ ions in β -CaCr₂O₄, the latter form is stabilized in the higher temperature region. With increasing content of Fe³⁺ ions in the structure of β -CaCr₂O₄, the temperature of its transformation is raised from 1720 °C up to the peritectic temperature of 1830 \pm 10 °C at a content of about 14 mole % CaFe₂O₄. Determination of the region

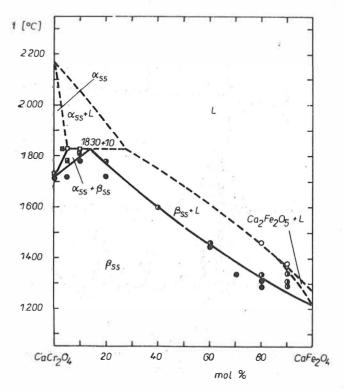


Fig. 1. Phase diagram of the system $CaCr_2O_4$ — $CaFe_2\bullet_4$; \bullet — β - $Ca(Cr, Fe)_2O_4$; (\bullet) — β - $Ca(Cr, Fe)_2O_4$ and melt, \bigcirc — melt, \square — α - $Ca(Cr, Fe)_2O_4$ and β - $Ca(Cr, Fe)_2O_4$, \square — $Ca(Cr, Fe)_2O_4$ β - $Ca(Cr, Fe)_2O_4$ and melt, \square — α - $Ca(Cr, Fe)_2O_4$.

where α and the β form of Ca(Cr, Fe)₂O₄ co-exist, and which separates the single-phase fields of α -Ca(Cr, Fe)₂O₄ and β -Ca(Cr, Fe)₂O₄ solutions, was carried out on the basis of X-ray phase analysis and is demonstrated on the diffractograms of samples No 18, 20, 21 and 22 (Fig. 2).

In agreement with the study by Phillips and Muan [10] the diagram specifies incongruent melting of pure CaFe₂O₄ at 1216 °C yielding a melt and small amount of Ca₂Fe₂O₅. Decreasing of the CaFe₂O₄ content brings about an increase of the solidus temperature. The course of the solidus line, which is marked by the dashed line, was determined on the basis of two experimental points.

The findings obtained by the study of phase equilibria in the system CaCr_2O_4 — CaFe_2O_4 provide information on the behaviour of the system in air atmosphere.

Silikáty č. 1, 1981 17

From the standpoint of utilization of refractories containing $CaCr_2O_4$ as lining for plant used in the processing of liquid stell, the data on mutual solubility of $CaCr_2O_4$ and $CaFe_2O_4$ contained in slag, occurrence of the liquid phase and the modification transformation of β to α $CaCr_2O_4$, involving a change in volume, are of considerable significance. In these plants the linings are likewise exposed to the effect of atmo-

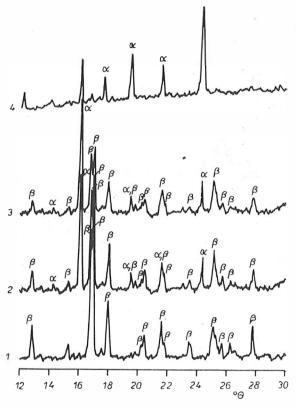


Fig. 2. Diffractograms of samples 18, 20, 21 and 22; $1-t=1780\,^{\circ}$ C, 10 mole % CaFe₂O₄, $2-t=1810\,^{\circ}$ C, 10 mole % CaFe₂O₄, $3-t=1830\,^{\circ}$ C, 5 mole % CaFe₂O₄, $4-t=1830\,^{\circ}$ C, 3 mole % CaFe₂O₄.

sphere with a partial pressure of oxygen amounting to about 10^{-5} Pa, and this is why the system $\text{CaO}\text{--}\text{Cr}_2\text{O}_3\text{---}\text{Fe}_2\text{O}_3$ should be studied in the region of lower partial pressures of oxygen.

CONCLUSION

The system $CaCr_2O_4$ — $CaFe_2O_4$ was studied in the temperature interval of 1280 to 1830 °C. The samples were heated in air atmosphere and the phase diagram constructed on the basis of results of X-ray and microscopical analysis indicates that substitution of Fe^{3+} ions for Cr^{3+} ions in the structure of β -Ca Cr_2O_4 brings about an increase in the temperature of modification transformation. A peritectic temperature of

1830 ±10 °C was established. The solubility of CaFe₂O₄ in α-CaCr₂O₄ at peritectic temperature amounts to about 5 mole %. In the subsolidus region of the system there exists a field of coexistence of α with β Ca(Cr, Fe)₂O₄. In the section of the diagram with a higher CaFe₂O₄ content the solidus line was established and the probable course of the liquidus line was determined on the basis of two experimental points.

References

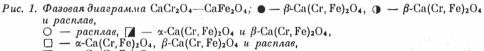
- [1] Wartenberg H., Reusch H. J., Saran E.: J. Anorg. Chem. 230, 257 (1937).
- [2] Patent 7469713 Japan Kokai.
- [3] Patent 7469714 Japan Kokai.
- [4] Patent 7468715 Japan Kokai.
- [5] Berezhnoy A. S.: Multicomponent Systems of Oxides (in Russian). Naukova dumka, Kijew 1970.
- [6] Pánek Z., Kanclíř E.: Silikáty 20, 113 (1976).
- [7] Pánek Z., Figusch V.: To be published.
- [8] Ford W. F., Ress W. J.: Trans. Brit. Cer. Soc. 77, 207 (1948).
- [9] Gmelins Handbuch der anorg. Chemie, 8. Auflage, Chrom, Teil B, System Nummer 52, p. 796. Verlag chemie, Weinheim 1962.
- [10] Phillips B., Muan A.: J. Am. Ceram. Soc. 42, 413 (1959).
 [11] Muan A., Sōmiya Sh.: J. Am. Ceram. Soc. 43, 204 (1960).
- [12] Ford W. F., Rees W. J.: Trans. Brit. Cer. Soc. 57, 233 (1958).
- [13] Olshanskij J. I., Cvetkov A. I., Shlepov V. K.: Dokl. AN USSR 96, 5, 1007 (1954).
 [14] Havlica J., Pánek Z.: Silikáty 24, 1 (1980).
 [15] Hill P. M., Peiser H. S., Rait J. R.: Acta Cryst. 9, 981 (1956).

- [16] Pausch H., Müller-Buschbaum H.: Z. allg. Chem. 405, 113 (1974).

FÁZOVÉ ROVNOVÁHY V SÚSTAVE CaCr₂O₄—CaFe₂O₄

Vladimír Ambrúz, Jaromír Havlica, Zdeněk Pánek

Ústav anorganickej chémie SAV, Bratislava


Študovala sa sústava CaCr₂O₄—CaFe₂O₄ v teplotnom intervale 1280 až 1830 °C vo vzdušnej atmosfére. Pri príprave vzoriek CaCr₂O₄ s 3 až 90 mol. % CaFe₂O₄ sa vychádzalo z roztokov dusičnanu vápenatého, dusičnanu železitého a dvojchromanu amonného. Po predžíhaní sa tabletky zahrievali po dobu 4 hodin v peci s molybdénovým vinutím v ochrannej atmosfére, resp. vo vysokoteplotnej peci CENTORR typ 10-2068. Teplota sa merala termočlánkami PtRh 18 a Ir-IrRh. Po náhlom ochladení sa vykonala rtg. fázová analýza, mikroskopická analýza a analýza pomocou mikroanalyzátora JXA-5A. Výsledky experimentov, na základe ktorých sa spresnil pseudobinárny diagram pre $p_{0_2}=0.021\,\mathrm{MPa}$ uvedený na obr. 1, sú zhrnuté v tabuľke I. $\mathbf Z$ diagramu vyplýva, že náhradou Fe³⁺ iónov za Cr³⁺ ióny v štruktúre CaCr₂O₄ dochádza k zvýšeniu teploty modifikačnej premeny z 1720 na 1830 °C pri obsahu cca 14 mol. % CaFe₂O₄. Rozpustnost ČaFe₂O₄ v α-CaCr₂O₄ pri peritektickej teplote je cca 5 mol. % (vid obr. 2). V časti diagramu s vyšším obsahom CaFe₂O₄ sa stanovila čiara solidus a na základe dvoch experimentálne získaných údajov sa určil pravdepodobný priebeh čiary liquidus.

- Obr. 1. Fázový diagram sústavy CaCr₂O₄—CaFe₂O₄;
 - $-\beta$ -Ca(Cr, Fe)₂O₄, $-\beta$ -Ca(Cr, Fe)₂O₄ a tavenina,
 - \bigcirc tavenina, \square α -Ca(Cr, Fe)₂O₄ a β -Ca(Cr, Fe)₂O₄,
 - _ α-Ca(Cr, Fe)₂O₄, β-Ca(Cr, Fe)₂O₄ a tavenina,
 - α-Ca(Cr, Fe)₂O₄.
- Obr. 2. Difraktogramy vzoriek 18, 20, 21 a 22;
 - $1 t = 1780 \, ^{\circ}C$, 10 mol. % CaFe₂O₄,
 - $2-t = 1810 \, {}^{\circ}C$, 10 mol. % $CaFe_2O_4$,
 - 3-t=1830 °C, 5 mol. % $CaFe_2O_4$, 4-t=1830 °C, 3 mol. % $CaFe_2O_4$.

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ CaCr₂O₄—Ca Fe₂O₄

Владимир Амбруз, Яромир Гавлица, Зденек Панек Институт неорганической химии САН, Братислава

Исследовали систему CaCr₂O₄ в температурном интервале 1280—1830 °C в атмосфере воздуха. При получении проб CaCr₂O₄ с 3—90 мол. % CaFe₂O₄ пользовались растворами интрата кальция, нитрата трехвалентного железа и бихромата аммония. После предварительного обжига таблетки нагревали 4 часа в печи с молибденовой обмоткой в запитной атмосфере или в высокотемпературной печи СЕNTORR типа 10-2068. Температуру измеряли с помощью термоэлементов PtRh 18 и Ir — IrRh. После резкого охлаждения проводили рентгеновский фазовый анализ, микроскопический анализ и анализ с помощью микроанализатора JXA—5A. Результаты экспериментов, на основании которых уточняли исевдобинарную диаграмму для $p_{02}=0.021$ МПа, приводимую на рис. 1, имеются в таблице 1. Из диаграммы следует, что заменой ионов Cr^{3+} ионами Fe³⁺ в структуре CaCr₂O₄ вызывается повышение температуры полиморфного превращения с 1720 до 1830 °C при содержании приблизительно 14 мол. % CaFe₂O₄. Растворимость CaFe₂O₄ в α-CaCr₂O₄ при перитектической температуре составляет около 5 мол. % (см. рис. 2). В части диаграммы с большим содержанием CaFe₂O₄ установили кривую солидуса и на основании двух экспериментально полученных данных установили предполагаемый ход кривой ликвидуса.

— α-Ca(Cr, Fe)₂O₄.

Рис. 2. Дифракционная картина проб 18, 20, 21 и 22; 1-t=1780 °C, 10 мол. % Ca Fe₂O₄, 2-t=1810 °C, 10 мол. % CaFe₂O₄, 3-t=1830 °C, 5 мол. % CaFe₂O₄, 4-t=1830 °C, 5 мол. % $t = 1830 \, ^{\circ}C$, 3 mon. % $Ca \, Fe_2O_4$.