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The proposed model of electric resistance drying of ceramic bodies in a quasista­
tionary conditions wus developed on the calculation of moisture and temperature 
fields. The solution has been derived or a constant diffusion coefficient as well 
as for a diffusion coefficient depending on temperature. A comparison of the 
results obtained with the two models and the experimental values showed a sa­
tisfactory agreement, thus proving the models to be suitable for the description 
of electric resistance drying. 

INTRODUCTION 

The purpose of drying of ceramic bodies is to remove the technologically 
necessary water from the ceramic mix as fast as possible without damaging the 
green ware. The uniformity of elimination of water from the body affects the final 
compactness and texture, and incorrect drying may be responsible for the formation 
of microcracks and even impaired integrity of the body. The uniformity of texture 
in the green body further influences the course of the consequent technological 
operation, that is firing, and likewise the final properties of the ware. The moisture 
field occurring in the body in the course of drying is therefore a suitable criterion 
for assessing the conditions of conducting the drying process. In order to control 
correctly the operation, one should thus know the moisture content field, as its 
character is decisive for the preparation of homogeneous, texturally unexception­
able bodies. 

If a water-saturated ceramic mix is regarded as a binary mixture of incompres­
sible components, i.e. water and the ceramic material, then electric resistance 
drying can be described as a combined process of moisture transfer by diffusion 
and heat transfer by conduction, while using an electric bulk source of heat. 

On defining the volume fraction of moisture content C in the mix by the equation 

(1) 

where (!Lis the density of water, (!sis the density of the ceramic material and w is the 
absolute moisture content (i.e. the ration of water and solid component densities), 
one obtains the moisture balance in the form 

otC + div h = 0, 

where OtC is the derivative of moisture content in respect to time, 
and for the density of volume flow of moisture h it holds that 

h = -Der grad C, 

(2) 

(3) 

where Der iR the effective diffusion coefficient including the effect of capillary 
barodiffusion while neglecting the effct of thermodiffusion on water transfer in 
the mix. 
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The thermal balance has the form 

(!CpCJtT = - div q + (!T, (4) 

where (! is the mix density, cp is the specific heat, oiT signifies the derivative of 
temperature in respect to time and r is the specific heat source, while (!T is the 
density of the bulk heat source. On neglecting the Dufour phenomenon, the follow­
ing equation holds for the heat flux density q: 

q = -Ji.grad T, (5) 

where ,1. is the thermal conductivity of the mix. 
If the electric heat source is of the internal type, the heat evolved is proportional 

to the electric currnnt. As the water-saturated ceramic mix in an alternating 
electric fields behaves as an inhomogeneous conductor, it holds for the density of 
electric current je that 

je = -<1 grad <p - L1 grad c, (6) 

where <1 is electric conductance, grad <p is the gradient of electric potential, c is the 
concentration of soluble salts and L1 is the diffusion-electric coefficient. The 
diffusion electric phenomenon L1 grad c in a water-saturated ceramic mix occurs 
as a result of a concentration gradient of water-soluble salts in the mix bulk. 

The balance and constitutive equations (2) - (6) represent a general model of 
moisture and temperature transfer in a ceramic body with an internal heat source. 
Knowledge of the material quantities, supplemented with initial and boundary 
conditions defining the given operation, allows the time development of moisture 
content profiles and temperature profiles in the body to be calculated. 

The process of electric resistance drying of ceramic bodies is divided into two 
stages. Following the stage of heating up the body, which creates a temperature 
and moisture content field, the drying proceeds at a constant rate, i.e. h = h8. The 
internal heat source accelerates the heating up stage quite considerably as compared 
to convective heat transfer. From the standpoint of the course of electric resistance 
drying, the stage of constant drying rate is therefoie of decisive significance. On 
the assumption that the temperature and moisture fields in the body have fully 
developed during the heating up stage, a prt>cise solution of the stage of constant 
drying rate is provided by the so-called quasistationary state at which oeC =
= olJ = const., where O is the mean moisture content during time t. In the 
qua.sistationary state, the deflection of moisture content from its mean value i,; 
therefore independent of time. From this it follows that the shape of the moisture 
profile does not change in terms of time and that the local moisture content at each 
point decreases at the same rate, given by the rate at which the mean moisture 
content decreases. 

The present study is concerned with developing and verifying a model of electric 
resistance drying of ceramic bodies under quasistationary conditions for the 
calculation of moisture and temperature profiles. 

MODEL OF ELECTRIC RESISTANCE DRYING OF A PLATE-SHAPED 

BODY IN QUASISTATIONARY CONDITIONS 

During electric resistance drying of an infinite plate 2L in thickness, the process 
involved is unidimensional diffusion and the balance equation (2) acquires the 
form 
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where x is the coordinate in the direction of diffusion and for h it holds that 

h = -Do,;O. 

(7) 

(8) 

If the conditions of drying are identical on both sides of the plate, the process is 
symmetrical (cf. Fig. 1) as the moisture profile is symmetrical with respect to the 
plate axis. Mathematically, this drying from both sides can be treated as one-Ride 
drying of a plate of half thickness [2, 6]. 

Fig, J. Drying a plate 2L in thickness. 

During the stage of constant drying rate, the flux of water at the plate surface is 
constant, so that it holds that 

h = h8 for x = L. 

On defining the mean moisture content in the body at time t as 

L 

C(t) = L-1 J C(x, t) dx, 
0 

then from equation (7) for the conditions (9) it follows that 

L L 

dtC = L-1 J o,C dx = -L-1 J oz h dx = -L-1 h8 

0 0 

as at x = 0, h = 0. Integration of (11) yields 

C = Co -h8L-1t, 

(9) 

(10) 

(11) 

(12) 

where C0 is the initial mean moisture content and h is the rate of drying defined 
by equation (9). For the sake of simplification, let us introduce the following 
dimensionless quatities: 

� = x/L r = DrL-2t t:5 = D/D,, 

y = L-1h-1D,(C - C), (13) 

where D, is the standard diffusion coefficient, �. r and t:5 are dimensionless distance, 
dimensionless time and dimensionless diffusivity respectively and y is dimensionless 
moisture content for whose mean value with respect to (10) it holds that 

y = JyM = o. (14) 
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By introducing (8), (12) and (13) into (7) one obtains the equation 

(15) 

and the boundary condition after substitution into (8) and (13) has the form 

;=0 

; = 1 

o(y) ow= o 
o(y) oey = -1. (16) 

If the diffusion coefficient is independent of moisture content but generally 
a function of temperature or texture not subject to changes in terms of time', it is 
possible to consider a quasistationary state defined as follows: 

o1C = oil), i.e. <\y = 0. (17) 

In the quasistationary conditions, equation (7) acquires the following form with 
respect to (12): 

(18) 

whose integration 

(19) 

shows that the fl.ow of water by volume is a linear function of coordinate x. In 
view of (17), equation (15) acquires the form 

(20) 

The solution of (20) for conditions (14) and (16) has the form 

1 /' /' 

y = s [J om-1 ; dfl d; _ J om-1 ; d;. (21) 
0 0 0 

This equation makes it possible to calculate the moisture profile in a body if the 
distribution of diffusivity in the plate O(;), the mean moisture content in the body 
at time r and the rate of drying h8 are known. 

In a plate-shaped body L in thickness the heat transfer is unidimensional and 
balance (4) has then the form 

(22) 
where for q it holds that 

q = -AoxT. (23) 

During electric resistance drying, the body is heated with alternating electric 
current. If the ceramic mix is free of a concentration gradient of water-soluble 
salts, equation (6) for unidimensional electric current through the plate-shaped 
body acquires the form of Ohm's law: 

ie = -a grad <p, 

and for the bulk heat source it holds that 
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(24) 

(25) 
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where R is the electric resistivity of the body having the volume V and I is the 
electric current. If e, c

p 
and Ji. are constant, then for a steady state equation (22) 

has the form 
o;T = -RJ2y-1Ji,-1. (26) 

Introduction of dimensionless distance ; according to (13) and resolving of (26) 
for the boundary conditions 

ar;at = o,
T = Ts, 

where Ts is the plate surface temperature, 
yields the temperature profile in the body in the form 

T =Ts+ RJ2L2(2VJi.)-l (1 - ;2). 

The following equation holds for the mean body temperature: 

T = L-1 J T(x) dx =Ts+ RI2L2(3VJ.)-1. 
0 

(27) 

(28) 

(29) 

Equation (28) allows the temperature profile in the plate to be calculated if one 
knows the temperature of its surface, its electric resistivity, the passing electric 
current and its thermal conductivity. 

SOLUTION OF THE MODEL 

FOR A CONSTANT DIFFUSION COEFFICIENT 

The diffusion coefficient of water in a saturated porcelain mix does not depend 
on moisture content [3-41 and during the stage of constant drying rate, the body 
temperature is constant. On neglecting the temperature profile in the body one can 
introduce the assumption of a constant diffusion coefficient related to body surface 
temperature Ts. In the given case it holds that Dr = D and b = 1. Equation (20) 
thus acquires the form 

a�y = -1, 

and boundary conditions (16) have the form 

a�y = o 

a.y = -1,

(30) 

(31) 

while condition (14) retains its form. Solution (30) for conditions (14) and (31) 
has the form 

y = 1/6 - ;2/2. (32) 

Substitution of (13) into (32) yields the following equation for the moisture profile 
in the body: 

C(x) = (} + h8LD-l(l/6 - I/2(x/L)2). (33) 

If the condition D = const. is met, the moisture and temperature profiles in the 
body during electric resistance drying in quasistationary conditions can be calcula- . 
ted from equations (33) and (28). 
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SOLUTION OF THE MODEL 
FOR THE TEMPERATURE-DEPENDENT DIFFUSION COEFFICIENT 

In a quasistationary state, both the body temperature and the temperature 
profile are constant. The temperature dependence of the diffusion coefficient has the 
general form 

D = Do exp (-B/T), (34) 

where D0 is a constant and B is the characteristic temperature of the process. If 
the temperature of the diffusion coefficient at body temperature T 8 is chosen as the 
standard one, then it holds that 

b = exp (-B(T-1-T8-I)). (35) 

The parabolic temperature profile in the body is described by equation (28) which 
can be written in the form 

T =To+ �2(Ts -To), (36) 

where T0 is the temperature at the plate centre. 
The concentration profile is calculated by numerically resolving equation (21) 

while using equations (35) and (36). 

VERIFICATION OF THE MODEL OF DRYING A CERAMIC PLATE 
IN QUASISTATIONARY CONDITIONS USING !ELECTRIC RESISTAXCE 

The model and the validity of the simplifying assumptions introduced can be 
verified by comparing the calculated profiles C = C(x) and T = T(x) with the 
experimentally established ones. On the basis of the temperature dependence of the 
effective diffusion coefficient of water in porcelain mix in the form [5] 

Det = (2.46 . 10-4 exp (-2425/T)) m2 s-1, (37) 

for the values of quantities T = 317.15 K, T0 = 318.2 K, T8 = 315.85 K, C = 
= 0.4102 m3m-3, h = 2.6 . 10-7 ms-1, L = 15 . I0-3 m, V = 5.4 . 10-s m3, A = 
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Fig. 2. Moillture content profile in a boedy; 
1 - experimental, 2 - calculated according to (21), 3 - calculated according to (33). 
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= 3.3 Wm-1 K-1, U = 24.6 V, I= 0.18 A, R = 136.66 Q the temperature profiles 
calculated from equations (33) and (21), and the temperature profiles calculated 
from equation (28) are plotted in Figs. 2 and 3. For the sake of comparison, the 
experimentally determined moisture and temperature profile in the body (while 
keeping the values of the quantities given above) are also plotted in Figs. 2 and 3. 
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Fig. 3. Temperature profile in a body; 
1 - experimental, 2 - calculated according to (28). 

CONCLUSION 

The following conclusions can be drawn from the experimental verification of the 
proposed model of drying a porcelain body in quasistationary conditions: 

1. The satisfactory agreement of the experimental and calculated moisture and
temperature profiles in the body showed the model to be suitable for describing the 
course of electric resistance drying of bodies in a quasistationary conditions. 

2. In the case of small temperature gradients in the body, the model with a con­
stant diffusion coefficient can be URed for calculating the moisture profile with 
satisfactory accuracy. 
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MODEL ELEKTROODPOROVEHO SUSENf KERAMICKEHO TELESA 
V KVAZISTACIONARNflvI REZIMU 

Jifi Havrda, Eva Gregorova, Frantisek Oujifi 

Vysoka skola chemicko-technologiclca, Katedra technologie silikatu 
Suchbatarova 5, 166 28 Praha 6 

Elektroodporove suseni lze pop3at jako kombinovany proces sdileni vlhkosti difuzi a tepla. 
vedenim s vnitfnim elektrickym zdrojem tepla. Je vypracovan matematicky model elektro­
odporoveho suseni keramickeho telesa v kvazistacionarnim rezimu, umoznujici vypocet casovych 
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vyvoju vlhkostnich a teplotnich poli v susenem telese. Vysledkem reseni pro pripad konstantniho 
difuzniho koeficientu a difuzniho koeficientu zavisleho na teplote byl profil teploty a vlhkosti 
v telese. Porovnani s profily stanovenymi experimentalne je zcela uspokojive a je tedy dukazem, 
fo nalezeny model vystihuje proces elektroodporoveho suseni. 

Obr. 1. Suseni desky tlousfky 2L. 

Obr. 2. Vlhkostni profil v telese; 1 - experimentalni, 2 - vypocteny podle (21), 3 - vypocteny 
podle (33). 

Obr. 3. Teplotni profil v telese; 1 - experimentalni, 2 - vypocteny podle (28). 

MO)];E Jlh 8 JIEKTPOCO IIPOTMB MTE JihH OH C -YIIIKM 
KEPAMMqEcKoro TEJIA B KBA3MCTA11,MOHAPHOM PElliMME 

Mp»rn: faBpl-\a, 8Ba fpernpoBa, <DpaHTHIIICK Oynpmn 

X u.,uu1w-mexH,o,io2u11,ec1,uu UH,cmumym, 1,arfie8pa mexH,o,ioeuu cu,iu1,amoe, 
166 28 Ilpaaa, 6 

8JieKTpocorrpoTHBHTCJibHYID cyIIIKY MOlRHO OIIHCaTb KaK KOM6HHHpoBaHHblll rrpou;ecc 
rrepe)];aqn BJialRHOCTH 1-1nq,q,yaneii H TCIIJia rrepe1-1aqeii C BHYTPCHHHM ::JJICKTpnqecKHM HCToq­
HHKOM TCIIJia. Bbma paapa6oTaHa MaTeMaTHqecKalI MOI-\CJib ::JJICKTpocorrpoTHBHTCJibHOll 
cyIIIKH KepeMnqecKoro TeJia B KBa3HCTaIJ;HOHa PHOM pelRHMC, rrpe1-1ocTaBJilIKJm;eM B03MOlR­
HOCTb paccqeTa BpeMCHBhJX pa3BHTHH BJialRHOCTHbIX H TCM!ICpaTypHbIX IIOJICH B cyIIIeHHOM 
TCJie. PeayJibTaTOM peIIICHHlI B cJiyqae IIOCTOlIHHOro KO::JtptpHIJ;HCHTa I-\Htptpy3HH H KO::Jtp­
tpHIJ;HCHTa I-\HtptpY3HH, 3aBHCHm;ero OT TCMIICpaTyphl, HBJIHCTCH rrpotpHJib TCMrrepaTyphl H BJiam­
HOCTH B TeJie. CorrocTaBJICHHe C rrpotpHJllIMH, ycTaHQBJICHHbIMH ::JKCIICpHMCBTaJibHhIM rryTeM, 
HBJIHCTCH BCCbMa Hal-\ClRHhIM, a CJICI-\OBaTCJibHO CJIYlRHT H I-\OKa3aTeJibCTBOM, qTo Haii1�eHHalI 
MOI-\Clll, OTpamaeT rrpou;ecc 3JICKTpocorrpoTHBHTCJibHOH cyIIIKH. 

Puc. 1. Cyiu1,a n,iacmUH,KU moAUfUH,011 e 2L. 
Puc. 2. B,ia:HCH,oCmH,bLU nporfiu.11,b e me,ie; 1 - a1,cnepu.,u,e1-1ma.ib1-1b1u, 2 - pacc11,umaH,H,btu 

C02AaCH,O (21), 3 - pacc11,umaH,H,b!U COMaCH,O (33). 

Puc. 3. Te.,unepamypH,b!U npo<jJUAb e me,ie; 1 - a1,cnepu.,ueH,ma,ibH,bLU, 2 - pacc11,umnHl-!biu 
COMaCl-!o (28). 
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