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The proposed model of electric resistance drying of ceramic bodies in a quasista-
tionary conditions wus developed on the calculation of moisture and temperature
fields. The solution has been derived or a constant diffusion coefficient as well
as for a diffusion coefficient depending on temperature. A comparison of the
results obtained with the two models and the experimental values showed a sa-
tisfactory agreement, thus proving the models to be suitable for the description
of electric resistance drying.

INTRODUCTION

The purpose of drying of ceramic bodies is to remove the technologically
necessary water from the ceramic mix as fast as possible without damaging the
green ware. The uniformity of elimination of water from the body affects the final
compactness and texture, and incorrect drying may be responsible for the formation
of microcracks and even impaired integrity of the body. The uniformity of texture
in the green body further influences the course of the consequent technological
operation, that is firing, and likewise the final properties of the ware. The moisture
field occurring in the body in the course of drying is therefore a suitable criterion
for assessing the conditions of conducting the drying process. In order to control
correctly the operation, one should thus know the moisture content field, as its
character is decisive for the preparation of homogeneous, texturally unexception-
able bodies.

If a water-saturated ceramic mix is regarded as a binary mixture of incompres-
sible components, i.e. water and the ceramic material, then electric resistance
drying can be described as a combined process of moisture transfer by diffusion
and heat transfer by conduction, while using an electric bulk source of heat.

On defining the volume fraction of moisture content € in the mix by the equation

C = wloLos™ + w), (1)

where g, is the density of water, gg is the density of the ceramic material and wis the
absolute moisture content (i.e. the ration of water and solid component densities),
one obtains the moisture balance in the form

8,0 + div h = 0, 2)

where 6,C i8 the derivative of moisture content in respect to time,
and for the density of volume flow of moisture h it holds that

h = —Des grad C, (3)

where Degt is the effective diffusion coefficient including the effect of capillary
barodiffusion while neglecting the effct of thermodiffusion on water transfer in
the mix.
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The thermal balance has the form
0¢pdT = — div q + or, (4)

where ¢ is the mix density, ¢p is the specific heat, 0,1 signifies the derivative of
temperature in respect to time and r is the specific heat source, while pr is the
density of the bulk heat source. On neglecting the Dufour phenomenon, the follow-
ing equation holds for the heat flux density gq:

q=—Agrad T, (5)

where 4 is the thermal conductivity of the mix.

If the electric heat source is of the internal type, the heat evolved is proportional
to the electric curient. As the water-saturated ceramic mix in an alternating
electric fields behaves as an inhomogeneous conductor, it holds for the density of
electric current je that
je =—ograd p — Ly grad c, (6)
where o is electric conductance, grad ¢ is the gradient of electric potential, ¢ is the
concentration of soluble salts and L; is the diffusion-electric coefficient. The
diffusion electric phenomenon L, grad ¢ in a water-saturated ceramic mix occurs
as a result of a concentration gradient of water-soluble salts in the mix bulk.

The balance and constitutive equations (2) — (6) represent a general model of
moisture and temperature transfer in a ceramic body with an internal heat source.
Knowledge of the material quantities, supplemented with initial and boundary
conditions defining the given operation, allows the time development of moisture
content profiles and temperature profiles in the body to be calculated.

The process of electric resistance drying of ceramic bodies is divided into two
stages. Following the stage of heating up the body, which creates a temperature
and moisture content field, the drying proceeds at a constant rate, i.e. h = h,;. The
internal heat source accelerates the heating up stage quite considerably as compared
to convective heat transfer. From the standpoint of the course of electric resistance
drying, the stage of constant drying rate is therefoie of decisive significance. On
the assumption that the temperature and moisture fields in the body have fully
developed during the heating up stage, a precise solution of the stage of constant
drying rate is provided by the so-called quasistationary state at which 0;C =
= 0tC = const., where C is the mean moisture content during time ¢. In the
quasistationary state, the deflection of moisture content from its mean value is
therefore independent of time. From this it follows that the shape of the moisture
profile does not change in terms of time and that the local moisture content at each
point decreases at the same rate, given by the rate at which the mean moisture
content decreases.

The present study is concerned with developing and verifying a model of electric
resistance drying of ceramic bodies under quasistationary conditions for the
calculation of moisture and temperature profiles.

MODEL OF ELECTRIC RESISTANCE DRYING OF A PLATE-SHAPED
BODY IN QUASISTATIONARY CONDITIONS

During electric resistance drying of an infinite plate 2L in thickness, the process
involved is unidimensional diffusion and the balance equation (2) acquires the
form
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0:C + 0zh = 0, (7)
where z is the coordinate in the direction of diffusion and for h it holds that
h = —D0d,C. (8)

If the conditions of drying are identical on both sides of the plate, the process is
symmetrical (cf. Fig. 1) as the moisture profile is symmetrical with respect to the
plate axis. Mathematically, this drying from both sides can be treated as one-side
drying of a plate of half thickness [2, 6].
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Fig, 1. Drying o plate 2L in thickness.
During the stage of constant drying rate, the flux of water at the plate surface is
constant, so that it holds that
h = hy forx = L. (9)

On defining the mean moisture content in the body at time t as
O(t) = L“IEC(x, t) d, (10)
then from equation (7) for the conditions (9) it follows that
dC = L_liatc dz = —L-! :j) Ozhdxr = —L-1h, (11)

as at x = 0, h = 0. Integration of (11) yields
C = Co—h,L 1, (12)

where O, is the initial mean moisture content and h is the rate of drying defined
by equation (9). For the sake of simplification, let us introduce the following
dimensionless quatities:

t=wx/L t=DJL% 6=D|D,,
y = L-1h-1D,(C — O), (13)

where D, is the standard diffusion coefficient, £, T and 6 are dimensionless distance,
dimensionless time and dimensionless diffusivity respectively and y is dimensionless
moisture content for whose mean value with respect to (10) it holds that

ydE = 0. (14)

Oy

7:
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By introducing (8), (12) and (13) into (7) one obtains the equation
Oy = 06(8(y) dey) + 1 (15)

and the boundary condition after substitution into (8) and (13) has the form
£=0  O(y)ogy=

(16)

=1 O(y) Oy = —1.

If the diffusion coefficient is independent of moisture content but generally
a function of temperature or texture not subject to changes in terms of time, it is
possible to consider a quasistationary state defined as follows:

0:C = 0,C,i.e. 2y = 0. (17)

In the quasistationary conditions, equation (7) acquires the following form with
respect to (12):

Ozh = hgL, (18)
whose integration

h = hyL-1z (19)

shows that the flow of water by volume is a linear function of coordinate z. In
view of (17), equation (15) acquires the form

05(8(y) Ogy) = —1. (20)
The solution of (20) for conditions (14) and (16) has the form

1 & &
V= (! [(! 6(§)~t £dE)dé — (,]f 0(§)1 £dé. (21)

This equation makes it possible to calculate the moisture profile in a body if the
distribution of diffusivity in the plate §(£), the mean moisture content in the body
at time 7 and the rate of drying h,; are known.

In a plate-shaped body L in thickness the heat transfer is unidimensional and
balance (4) has then the form

0cp0T = —0z9 + or, (22)
where for q it holds that

During electric resistance drying, the body is heated with alternating electric
current. If the ceramic mix is free of a concentration gradient of water-soluble
salts, equation (6) for unidimensional electric current through the plate-shaped
body acquires the form of Ohm’s law:

je = —ograd ¢, (24)
and for the bulk heat source it holds that

or = RIZV, (25)
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where R is the electric resistivity of the body having the volume ¥V and I is the
electric current. If g, ¢; and 4 are constant, then for a steady state equation (22)
has the form

2T = —RI2V-1)-1, (26)

Introduction of dimensionless distance & according to (13) and resolving of (26)
for the boundary conditions

E=0 OT[eE =0,

E=1 T=Ts (27)
where T's is the plate surface temperature,
yields the temperature profile in the body in the form
T =Ts 4 RIZLX(2V)! (1 — &2). (28)
The following equation holds for the mean body temperature:
T=1L" Ojf T(z) de = Ts + RI2LI*(3VA)-1. (29)

Equation (28) allows the temperature profile in the plate to be calculated if one
knows the temperature of its surface, its electric resistivity, the passing electric
current and its thermal conductivity.

SOLUTION OF THE MODEL
FOR A CONSTANT DIFFUSION COEFFICIENT

The diffusion coefficient of water in a saturated porcelain mix does not depend
on moisture content [3—4] and during the stage of constant drying rate, the body
temperature is constant. On neglecting the temperature profile in the body one can
introduce the assumption of a constant diffusion coefficient related to body surface
temperature 7T's. In the given case it holds that D, = D and é = 1. Equation (20)
thus acquires the form

My = —1, (30)

and boundary conditions (16) have the form
£=0 oy= 0
E=1 Oy = —1,

while condition (14) retains its form. Solution (30) for conditions (14) and (31)
has the form

(31)

y =16 — &2/2. (32)

Substitution of (13) into (32) yields the following equation for the moisture profile
in the body:

O(x) = C + h;LD-(1/6 — 1/2(x/L)?). (33)
If the condition D = const. is met, the moisture and temperature profiles in the

body during electric resistance drying in quasistationary conditions can be calcula-
ted from equations (33) and (28).
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SOLUTION OF THE MODEL
FOR THE TEMPERATURE-DEPENDENT DIFFUSION COEFFICIENT

In a quasistationary state, both the body temperature and the temperature
profile are constant. The temperature dependence of the diffusion coefficient has the

general form
D = Dy exp (—B|T), (34)

where Dy is a constant and B is the characteristic temperature of the process. If
the temperature of the diffusion coefficient at body temperature 7' is chosen as the
standard one, then it holds that

0 = exp (—B(T1 — T¢™1)). (35)

The parabolic temperature profile in the body is described by equation (28) which

can be written in the form
T =T+ &(Ts— To), (36)

where T, is the temperature at the plate centre.
The concentration profile is calculated by numerically resolving equation (21)
while using equations (35) and (36).

VERIFICATION OF THE MODEL OF DRYING A CERAMIC PLATE
IN QUASISTATIONARY CONDITIONS USING [ELECTRIC RESISTANCE

The model and the validity of the simplifying assumptions introduced can be
verified by comparing the calculated profiles C = C(z) and T = T(z) with the
experimentally established ones. On the basis of the temperature dependence of the
effective diffusion coefficient of water in porcelain mix in the form [5]

Dot = (2.46 . 104 exp (—2425/T)) m? s-1, (37)

for the values of quantities T = 317.15 K, T, = 3182 K, Ts = 31585 K, C =
=04102 m3m—=3, h = 2.6 .10"ms"1, L =15.103m, V = 54.105m3, 1 =

1 § 1
0.42 |- -
L
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041 = =
1
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Fig. 2. Moisture content profile in a boedy;
1 — experimental, 2 — calculated according to (21), 3 — calculated according to (33).
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=33Wm1K-1,U=246V,]=0.18A, R = 136.66 Q the temperature profiles
calculated from equations (33) and (21), and the temperature profiles calculated
from equation (28) are plotted in Figs. 2 and 3. For the sake of comparison, the
experimentally determined moisture and temperature profile in the body (while
keeping the values of the quantities given above) are also plotted in Figs. 2 and 3.

T .
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315 |- .
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Fig. 3. Temperature profile tn « body;
1 — experimental, 2 — calculated according to (28).

CONCLUSION

The following conclusions can be drawn from the experimental verification of the
proposed model of drying a porcelain body in quasistationary conditions:

1. The satisfactory agreement of the experimental and calculated moisture and
temperature profiles in the body showed the model to be suitable for describing the
course of electric resistance drying of bodies in a quasistationary conditions.

2. In the case of small temperature gradients in the body, the model with a con-
stant diffusion coefficient can be used for calculating the moisture profile with

satisfactory accuracy.
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MODEL ELEKTROODPOROVEHO SUSENf KERAMICKEHO TELESA
V KVAZISTACIONARNIM REZIMU
Jifi Havrda, Eva Gregorova, Frantisek Oujifi
Vysoka skola chemicko-technologickd, Katedra technologie silikatd

Suchbdtarova 5, 166 28 Praha 6

Elektroodporové suseni lze popsat jako kombinovany proces sdileni vlhkosti difuzi a tepla
vedenim s vnitfnim elektrickym zdrojem tepla.Je vypracovan matematicky model elektro-
odporového suseni keramického télesa v kvazistacionarnim rezimu, umoznujici vypocet ¢asovych
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vyvoji vlhkostnich a teplotnich poli v suseném télese. Vysledkem Feseni pro pripad konstantniho
difazniho koeficientu a diftzniho koeficientu zavislého na teploté byl profil teploty a vlhkosti
v télese. Porovnani s profily stanovenymi experimentalné je zcela uspokojivé a je tedy dikazem,
%e nalezeny model vystihuje proces elektroodporového suSeni.

Obr. 1. Sufeni desky tloustky 2.L.

Obr. 2. Vikkostnt profil v télese; 1 — experimentdlni, 2 — wvypodlteny podle (21), 3 — vypodteny
podle (33).

Obr. 3. Teplotni profil v télese; 1 — experimentdlni, 2 — vypolteny podle (28).

MOIOEJIbE 3JEKTPOCOIIPOTUBUTEJBLHON CVIIKHU
KEPAMHUNYECKOI'O TEJIJA B KBA3UCTAIIMOHAPHOM PEWUME

Np:xn TaBpaa, 3Ba I'peropoBa, ®pasTHmeKk Oyup:xu

Xumuro-mexroaoeuneckull urcmumym, Kagedpa merroi02UU CUALUKAMOE,
166 28 Ilpaeca, 6

9JIEKTPOCONPOTHBUTEILHYI0 CYIIKY MOMKHO OIIMCATh KaK KOMOMHMPOBaHHELA mpoIlecc
nmepejayy BIAKHOCTH Auddysuel 1 Temia nepenaveil ¢ BEyTPeHHUM 3JIeKTPHYECKUM HCTOU-
HUKOM TelyJa. Brplla pa3pa®oraHa MareMaTHyecKas MOJEIb 3JIEKTPOCONPOTHBHUTEJLHOM
CYIMKHN KePeMUYecKOro Tejla B KBa3HCTANMOHAPHOM peKMMe, NPeJOCTaBJIAIONIEM BO3MOJK-
HOCTh paccyeTa BPeMeHHBLIX Pa3BUTHI BJIIa;KHOCTHBIX M TeMIlepaTypHBIX 110JIeH B CYMeHHOM
Tesle. PeayiipraToM pemeHHd B ciIydyae IIOCTOAHHOro koadduimenta pudpdysum m Koag-
¢unuenra guddys3un, 3aBUCAMIEr0 OT TeMIIePaTyPHI, ABJIAETCA NPOQHMIIb TeMIePaTyPH U BIlaK-
HocTH B Teite. ComocTaBileHMe ¢ MPOPUIIAME, YCTAHOBIEHHBIMH 3KCIIEPUMEHTAJILHBIM IIYTEM,
ABJIAETCA BechbMa HaeKHEIM, a CJIel0BaTeJILHO CJIYIKUT U JOKA3aTeJILCTBOM, YTO HalijieHHAA
MOJiedIb OTPaKaeT Hpoliece 3JIeKTPOCONPOTUBUTEILHON CYIIKH.

Puc. 1. Cywuka naacmunku moawguroti ¢ 2L.

Puc. 2. Baamrocmuwili npogpuav 6 meae; 1 — skcnepumenmanvubiii, 2 — paccuumaniiblii
coeaacro (21), 3 — paccuumannbiii coeaacro (33).
Puc. 3. Temnepamypruiii npoguav ¢ meae, 1 — skcnepumenmanvrwili, 2 — paccuumanmwlii

coaaacro (28).
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