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Art trttctttltt is tnade to sct up the .fundantentals for appll,ing mathentatical process modelling on the basis of rational
tltartnotnecltattics to tlte.ftlnning procťsS of oxide ceran'tic pastes plasticized bl,thermoplastic binders. IJsing ct crsrttinrtttttt
de'scriptirtn througltout rva start with the local balance cquations known from traditiotlal continurun ntechanics ancl nrcntiop the
.spee:ial stcttus o.f tlrc antropY inequality. Looking for a ntctterial model as sirnple as possible but as cpnrltle.r as naeclecl,
cott.ttittttive theory is used to deduce a sintltle .fluid ntodel (the generalized Newtonian liquid) with the help rqf constitutitte
ltrinciplas, and .fbr tht' one-ditnensional case the Herschel-Bulkle1, model is suggested. In order to ntake the theory liable to
c.rperime ntal veriÍication, idealizatiotts are made concerning.flow geontetr\,. go,,,ory Conditions are shortll, cliscusseel. Apart
front tlelivering a rational frarnework.for the ntodelling of cerarnic injectiot't molding, the methodological approach appliecl in
tltis paper should be o.l'value also.for other widell, used.fonning processes in ceratnic technology, especialll, coltl e.rtrusiott,
c-rtrusiott at e levatetl tenlperature or hot extrusiort.

INTRODUCTION

In.jcction molding is one oÍ. the most versatile
tcchniques Íor the automized large-Sca|e production of
small-sized cornplex-shaped ceramic parts. The whole
production process from the raw materials to the final
part consists in mixing and compounding the ceramic
powder with the oťganic btnder mix (binder, plasticizer
and other processing aids), the fbrming process proper
(injection rnolding sensu strictu), ejection of the green
part, debinding (burnout of binder, plasticizer and all
other organic conrpounds) and firing, where the ceramic
body undergoes sintering in the same way as bodies
fbrmed by any other ceramic shaping technique.

The subject of the present paper is the fbrming
process itsclf, where in practice a thermoplastic ceramic
paste is injected into a colder metal mold cavity, in
which it so|idiťies (under a certain hold pressure) to a
rigicl ceramic green body. Apart from inhomogeneities
remaining after miring and compounding, and apart from
<ief'e<;ts arising during the subsequent step of debinding,
the flow pattern during injection itself is decisive for the
ťormation of microstructure. And in contrast to the other
phenomena which can be considered as faults - or the
result of having not yet managcd the respective process
Step - the Íbrmation of orientation textures in the case of
non-spherical particles, gradients of density (particle
packing) or other smooth changes in microstructure are
essential parts of the process step itself and as such
unavoidable. It seems to us that controlling this
microstructure with its unavoidable "inhomogeneities"

should be one of the main objectives on the way to make
process control eÍ.fective and to enab|e the production oť
injeotion-molded ceramics with reproducible properries.

While most of the work done in the field of ceramic
injection molding is based on empirical approaches (cÍ''

e.g.[0, 13, 12, 17,14]) we feel that it is necessary to
encourage research on a rational basis and to investigate
the possibi|ities of such approaches Íbr our purpose.
Without doubt the mathematical modelling of a rcal
ceramic injection process (i.e. in the way in which it is
perforrÍred in practice) is a highly non-tlivial enterprise,
not to say hopelessly difficult.

The difficulties consist first of all in rhe material
concerned. An injection-molding paste is a mixture oť at
least one solid and one liquid component (constituent) or
phase. The solid phase for itself would behave as a
flowing powder system, the organic liquid phase usually
as a visco-elastic liquid. From a philosophical point of
view it would therefore be most satisfactory to model
such a system by multiphase mixture theory [25] and to
account for the possibly visco-elasto-plastic behavior of
such a material. It is clear however that in engineering
practice it can never be the aim of a material model to
describe all possible features of material behavior in any
thinkable situation. Much more elegant is a simple model
that incorporates exactly those features which are of
interest for the intended applications. Thus the choice of
an appropriate material model is always a compromise
between realistic generality, pr&ctical usef'ulness and
mathematical simplicity and has to be guided by a
portion of pragmatism.
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Not less severe is the complexity 01' the process
itselť (it is ne ithcr stcady nor isothermal) and tho possible
llow geornetries which could be of interest for ceramic
injection rnolding t l7l As far as these points are

concerned it is reasonable to make certain useful
idealizations which make the process model a little less
gencral but give way to considerable simplifications of
the governing fielci cquations and allow analytical
solutions. explioit calculations and the comparison with
experimental results.

SINGLE BODY CONTINUUM DESCRIPTION
OF CERAMIC PASTES

A typical ceramic iniection-rnolding mix consists of
ii continuous lluid phase (usually a thermoplastic binder)
and a dispcrsed soliil phase (the ccramic powdcr)'. Being
intcrested in the gross behavior oť such a rnaterial (e'g.

ir thermoplastic pastc with an oxide ceramic powder as a
í.iIler) during thc fbrming process, especially thc velocity
proÍ.ile which deveIops during flow, we choose a con-

tinuutn desoription Íbr t|re material as a whole and do not

dil'f'ercntiatc between the individual phases (constituents).

Thus wc considcr the matcrial as a single bodyr

charactcrizcci by a non-zero densityr, which is a smoothl
Í-uncticln til.thc spatial p<lsition x and the tirne instant /:

p: p(x,r) > 0 (l)

In orclcr to clcscribc nrechanical phcnomena, we intro-
c|uce a í.urthcr smtloth ťicld caIled nrtlticln by tlre

clcl'ormatiott Í.unction X, which is ir function oÍ. thc

rcl'erential position X and thc time instant r

y = f,(X, Í)

ancl dcÍ.inc thc deÍ'onnation gradicnt

F = Gradl(X, /) (3)

(wIrcrc',GIaCl'' t|cncltcs the reťerential graclient), tlre

vclocity

J1(X, r)

BAI,ANCE EQUATIONS
AND ENTROPY INEQT-TALITY

Acc,epting the

sider the following
classical continuum

Mass balance:

p+pdivv=0

Linear momentum

pv=divT+pb

single body approach wc harc to con-
set o1-balance equations known from
meohanics (here given in local form):

balance

( l0i

\1)

(rJ)

Internal energy balance:

pri=tr(TD)+divq+Q, (9)

where p is the density. v thc velocity, T Cauchy's stress

tensor, b the external body {-orcc, u the internal energy.

D the rate of deformation tensor, q the heat flux vector

and Q the heat source. In these equations "tr" denotes the

trace of a tensor, "div" the (spatial) divergcnce and a

superimposed dot the material tinlc derivativc oÍ.it soalar

tlr vectoria| quantity tp deťined by:

D9
A- +v.gracltp' c)t

(4)

grad v (where "grad" dcnotes the

its syrnmetric part callcd rate of

In the above case rlí a nrln-polar tnatcrial ((his wí.ls

assumed zr priori) thc angular momentum halancc rcduccs
to thc statement that thc stress tcnsctr is s1'tnlnctric ancl

need not be considered explicitly. The body l'orcc b and

thc heat Source Q being adjustablc Íionr clutsidc and t|rus

considcrcd to be known a priori, this is a systcnr tll'-5

equations in 15 unknowns (p, t, tt, thrcc componcnts ol'

v ancl q rcspcctivcly. siX cotnpr)l)cnts ()l'T). so that it is
gcncrally necessary to close the systcrn by spccil,ving l0
o1'these dependent variables (usually thc six stl-css tensor

cornponents, the three heat flux vector components atltl

internal energy) by constitutive equations. Examplcs tlÍ.

very simple constitutive equations wot-rld bc Newton's
reIation for linear|y visctlus Í.luids, Fourier.s reIation Í.or

heat conduction and the energetic equation tlf st;ttc Íilr lttt
ideal cas.

ln contrast to some other authors cven in the treld ot'

rationa| mechanics we prcťer to cal| systems ()l. tilis type.

where the solrd loading is ttear to the critical porvdcr
volurne concentration (CPVC), "pastes " artd use tliis hancly

wtlrd as a short hand synonym Íbr the rathcr clutnp-.y
cxprcssion "highly concentrated suspcnsion". It should bc

clear however that principally rational approaches arc apt

to frt mixtures r--rf arbitrary ct)ncentrations.
In contrast to mixtures which arc treatcd as "inLrltiplc

bodies" in rational thermomcchanics, cf. [25].
Viz, the bulk dcnsity of the paste as a whole.
I.e. as olien continuouslv diff'erentiable as needed.

t/l

v=X=
r)t

the velocity gradient
spatial gradient) and

clefbrmation tensor:

D = 
1/z (gradv + (gradv)r) , (5)

whcre the superscript 7 denote s the transpose of a tensor.

Tcl account for therrnal cff-ects we would have to

intrclduce also the ternperature field

T - T(x, t)

and its gradient.

(61
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.q opi'+div-- - >0
TT

Entropy and the Second Law have a special status

in modern continuum thermodynamics (rational

thermodynamics) which has been extensively dealt with
in works of the Truesdell-Coleman-Noll school and

many other works originating from or influenced by it,
cf. e.-q. [5, 15, Zl, 25, 26). In contrast to traditional
thermodynamics one generally adopts the idea of
considering the Second Law as a constitutive principle
(called entropy or dissipation principle) which imposes
restriotions on the constitutive equations and thus limits
not the kind of processes which are allowed to occur but

the kind of rcsponse by which a material reacts on the

inÍluences it undergoes during such a process.
The rnost universally accepted local form of the

Second Law is the so-called Clausius-Duhem inequality
in the form proposed by Truesdell and Toupin Í25' 27):

(ll)

where s is the entropy. For reasons of convenience and

practical handiness it is usual to combine it with the

First Law (in its local form, i.e. the internal energy
balance (9)) and to define the Helmholtz fiee energy

t'= u - Ts (lZ)

to obtain the so-called reduced inequality

I

tr(TD)-p/ -ptr-T q.s>0, (13)

where it is evident that the last three l.h.s. terms are

related to heat r:onduction, temperature changes and

changes in fl-ee energy, i.e. thermal effects in a broader
sense, while the first tenn accounts fbr dissipation due to
viscous eff'ects (internal fiiction), i.e. mechanical work.

In a purely mechanical theory or in isothermal situations
one consequence of this equation is that the viscosity
coefficient must a|ways be positive Íbr linearly viscous
fluids. For Í.urther consequences of this inequality in

non-isothermal situations the reader should consult [21].

THE 3-D MATERIAL MODEL

The way how a material behaves in a certain process

can be described by constitutive equations, which express
the dependence of quantities characterizing the material
response on the fields of density, motion and

temperature. The thermomechanical response of a

rnaterial at a certain spatial position in a body and at a
certain time would be completely characterized by the

oonstitutive equations for the internal energy u, the

entropy s, the heat flux vector q and the symmetric stress

tensor T. These quantities depend in general on the set of

independent variables p, X and 7 and their histories (i.e.

all their former values) in the whole body. This is in
rough words the meaning of a slightly extended version
of the principle of determinism as known from
constitutive theory. The fact that all quantities (u, s, q
and T) are assumed to depend on the same set of
independent variables and histories and no preferences
are made a priori is consistent with Truesdell's principle
of equipresence (equipresence rule) [25].

From a mathematical point of view, one could write
down the abstract form of such a dependence by a

response functional, whose independent variables would
be functions of time (from the infinite past up to the

present instant r) and all material points Y of a body
including the one under actual consideration X. However
a theory of such generality has never been developed.
Almost all materials of engineering interest can be

modelled as local materials, i.e. materials obeying the

principle of local action. In essence it says that the near
neighborhood of a material point has a stronger influence
on the material point under consideration than the more
distant neighborhood. Mathematically this corresponds to

substituting spatial functions as independent arguments of
the response f'unctional by its local values, gradients and

higher gradients at this specific material point. The
corresponding principle of differential memory states

something similar in dimensions of time: The near past
has a stronger influence on the material response of a

material point than the distant past. Mathematically this
means to substitute history functions as independent
arguments in the response functional by their actual
values, time derivatives and higher time derivatives at the

actual time instant.
With accepting these two principles we can replace

the complicated response functional by a response
Í'unction r and write the genera| thermomechanica|
material response in the following form:

{u, s, q, T} =

= F[x, t, p, X, T,

gradp, grad(gradp), ... p, p ... gruOp, ...

Grad1, Grad(GradX), ,.. X,X, ...GraAX, ...

gractl grad(grad T), ,., T, Ť, Grad7, .'' 1 , ( 14)

where all arguments except for x and r itself are fields,
i.e. functions of x (or X) and r.

Although this equation is very general, by adopting
it we have already excluded models for materials
exhibiting non-local effects and for materials with a

long-range memory. The first step can easily be justified,

because non-local effects certainly are not relevant for
the materials and processes that are interesting in ceramic
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tcchnology. Slightly more intricate is the justification ťor
i-enoring long-range memory eft'ects in ceramic injection
rnolding, since it is well known that e.g. theories of
larjin-g mernory, intcgral-type or ratc-type materials are
widcly usecl in polynrer science to describe certain
phcnomena exhibited by thermoplastic materials. Thesc
rnatcrials scl've as typical binders fbr the ceramic
in.jection lnolding process and it is nclt a priori clear, why
ir ncglcctitln tlÍ.memtlry e f'f.ects shrluld be justifiable here'
In Í.act typical tliernroplttstic ceramic pastcs do show
c'l'lects chiiraotcristic lbr materials with rnemory (e .g. the

dic-swell or Barus cfl'ect at tubc exits). It can however
not be thc airn of a material ntodci io describe a material
its such in all its aspccts. i.e. to predicate its possible
bchavior in all tirinkable situations ()r processes.
A rttaicrial Irlodcl should be first oť alI as simple irs

possiblc ancl tlrercfolc has to l'ocus on those specific and
ty'pical l'eatures ol'belravior which arc absolutcly
llcccssary Íilr the processcs to which the nrodel is
intendcd tcl apply. And fiom tlris point oť vicw an
tttspcctirln sh<lws tlrat long-range memory efÍ'ects are oÍ'
trtinilr iniptrrtance Íbr the nraterials cclnsiderecl here ancl
thc applicattitln in nlind. As Íar as mechanical behavitlr is
concerncc] wc have to dcscribc rnainly trvo Í.eatures oÍ'
ccrarnic in.icction itrolding pastes:

'l'hc non-linear tlow behavior (shear-rate dependcnt
apparcnt viscosity) and
tlrc pherrclnlcn()n t;Í.a yicId value oť Stťr:sS.

Ncit|rcr tlÍ'{hcsc is ltecessilrily rclaterJ to lorrg-ran.ge
lllcll]()|.y cÍ'|'ects anrl |ater rn this paper it wi|| bc cvident
that l'or reitsolts o1' cxperirncntal practlce it is not useful
tcl clrrlt;sc Ži l1l()I.c ctlrnplicatcd rnode|.

With r.cgar<.l t() the intenticlns tlť tlris paper \^/e

conl'ine thc tollclwing deductions to the purely mechanrcal
ttratcrial l.csponsc, i.c. to the strcss tenst;r in thc case oť
iso(hcrrnal processe s. 'fhrrs we ignore hcre the
conSlituttr,c cc1uatitrn |ilr the heat ílux Vector (in
ttutttcrici"tI sirttulatitlIrs rtl' ntln-isotlrcrnial Ílow or pIastic
irr.icetion illtllcling Fouricr.s |;rw is usually applied), írlr
entropy ancl lirr internal cner-cy. and bv .rmitting the
tetlrpcrature gradient in the set oÍ. independent variables
Wc treirt the lnatcl.ial as iť it were a non.Conductor oť
l'lcat. Furthermore we rnodel our ceramic in,iection
rrrtll<Jing paStc ils íl S()-cillIccl sirnplc material ([ ltj]' cf'also
[2ó| and otlrer textt'rooks), i'e, we ottrit density gradicnts
lnd lri_eher deforrnation _qradients in thc set of
inclepenclcnt variabIes. While of certain importance Íor
rnixture rnodel.s [15,21], no nccessity has arisen to apply
a theory o1' non-simple nraterials within tlre context of a
single bcldy approaclr and No|l.s theory oť sinrple
materials [ 8] cornprises all rnaterial rnodcls that arc
kn<lwn íiorn traditional an<] linear irrever.sible
thcrnroclynzunics. A clill'erential rnernory with respect to

dcnsity has never been observecl I l5l and experience has
shown tlrat differential ntemory with respccl to tentpe-
rature can be ignored in processes where the tentperaturc'
r:hanges arc not too abrupt (for isothennal proccsses it rs

ncli relevant at all). so that we can also ontit thc lirrrc
derivatives of density and tcniperaturc in thc sct of
independcnt variabIes' Ftlr the sake clť sirrrplicrty' Wc

tentatively ornit higher gradicnts and titne derir,atives.
Tlre constitutive equation Íor the stress tens<lr is then:

T = Ťtx./.p.r. 1. GratJ1. 1. G-rud1i . (l.5l

It can easily be shrlwn that a dcpendence tlÍ.this typc is
the sinrplest possiblc cquation which allows thc
description of viscous cÍ.f.ccts (intcrnal tiiction), which is
ncc(lssl'll.y to nrodel real Íluids in proces.ses whcre they c|o

not behavc .ts Eulcrian (i.c inviscicl) r;ncs. A lnorc
firrrriliar lirrnr <;l'this equation i.s I2ll :

T = Ť(x' t,p.T, X' F. v. -eraclv)
( |Ó)

E,.,'cn now the dependence is ttlt; .9enel.a| Íl.t)ln a physica|
ptlint oť view. Sottre ol. lhe indcpendent vaI'iab|es are
crcludcd by the princip|e oÍ rnatcrial objectivity. rvhich
cnsurcs thc inr,'ariancc ol. nratcrial re.sponse rvitlr respect
trl Girlilci transÍ'orttla(ions oť t|re clbser','cr' In rcgarcl rlÍ

this prrnciplc- the rnotion (delbrrtration I'unc(ion) X thc
vclocity v ancl the skcw-sl,mmctlic paft of'thc rclocitv
gradient as w'ell as thc cxplicit clepcnclcncc on thc sltatial
posrtion x and thc t"lrne instant t vanish. Ilurthcrnrorc the

intencled appIicatitin to iln isotrtlpic Ílui<i alltlws us t()

exploit the symrnetry principle. with thc hclp o1'which it
can he shown that tlre dependence oí' the dcÍ.ormatitltt
gradrent F is redundant [ 15, 2l]. Thc reniaining
constitutive equation is then:

r = Ť(p' r, D) (l7)

.fhis is not all. The pr.incip|e oÍ nraterial tlbiectivity bcirrs
another important consequence inso{'ar as it states than
any objcctive tensor ťunction (and T is a priori
intrclduced aS an tlbjective quantity, cť. [2 | l. must
ttansform accordinc to then transfot.matirin lau. <lÍ. a

geometricerl tensur, i.e. must hal'e following property.

QTQ'= QŤ(p. 7. D)Q'_ Ť(p, r. QDQ') ( rrJ)

Here Q denotes an arbitrary orthogonal tcnsor (i.e. det

Q = + I for proper and det a -- - I for irnproper
rotations). Tensor Íunotions with tlris pr()perty arc ciil|cd
isotropic ! 5, 2l), and such isotropic tensor-valued
functions with a symmetric second-order tensrtr ar-gument
(D) can be written in a morc explicit form v,,ithout loss
clť genera|ity (by the CayIey-Hamilton thcorem and tlrc
representation theorem known Íiotn tensor analysis' cf.

[2, 15,26]):
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In this equation I denotes the unit tensor and the scalar
coefficients Q, are generally functions of p, i" and the
three principal invariants of D defined as:

invariant on the set of arguments it can be shown [22]
that for simple shear flows the determinant of D
vanishes6 and the resulting constitutive equation for the
shear stress is the well known model for so-called
generalized Newtonian liquids:

t = 2\(p, T,2trDz)D

T=Q,,I+Q,D+QrDt

ID = trD

IIo = %[(trD)t - trDt l

III,,, : detD

divv = 0

It can be shown easily that this implies a zero
the Ílrst invariant:

divv=trD=Io=0

and a corresponding simplification of the
invariant IIo.

(le)

(20)

(21)

in the well-known stress
fluids:

(24)

(26)

For our purposes a further and very significant
srmplification of this equation fbllows from the fact that
ťor processes oť engineering interest a ceramic injection
rnolcling paste can be considered as incompressible as
long as vacuum voids, air inclusions or gas bubbles are
absents. In this case the continuity equation for mass (7)
reduces to the statement:

the numerical factors being conventional tl l. The
so-called apparent viscosity 11 is a function of bulk
density p7, temperature 7 and the argument that can in
simple shear flows be interpreted as a square of a scalar
shear rate or, equivalently, as the shear of one component
of the velocity gradient.

SPECIAL FLOW GEOMETRIES
AND BOUNDARY CONDITIONS

Explicit calculations of velocity profiles in general
3-D flow processes usually require a very caref-ul analysis
of the respective geometry and the choice of an
appropriate numerical algorithm to solve the governing
PDEs. This is a highly non-trivial task for whole branch
of engineering called Computational Fluid Dynamics
(CFD) and goes beyond the objective of the presenr
paper. It is clear that for explicit calculations and
predictions of velocity profiles a constitutive equation oť
thc form (26) is still too general. Therefore one is Íbrced
to assume a certain form of the dependence of q on the
argument ZtrDz, which should be plausible, simple and
permit a physical interpretation of the new coefficients or
parameters introduced. The general procedure to manage
this prob|em in commercial soÍiware packages is to take
one of the well known rheological models developed fbr
I -D situations (in the simplest case Newton's constitutive

The question whether or not a ceramic mix can be
considered as incompressible is not trivial. Pure liquids and
solids are commonly considered as incompressible in
contrast to gases or gas-containing liquids. This is
reasonable. Note however that a liquid-solid mixture can be
compressible even if both phases are incompressible. This
is due to possible changes in the solid volume fraction
during f1ow. If the solid particles are not by chance
neutrally buoyant, i.e. of equal density as the surrounding
liquid, the mixture as a whole can well undergo changes in
(bulk) density. However Íor the solid |oadings near to the
CPVC as is the case in most injection molding pastes, the
assumption of incompressibility should not be too ťar from
reality.
Many different types of flow are locally simple shear flows
and belong to this class, but it is out of question that in the
case of mold filling in ceramic injection molding a certain
care must be taken when the mold cavity is of complicated
form, e.g. containing sudden contractions or expansions.
Remembering the incompressibility condition, i.e. the fact
that p is constant in the tlow considered, this dependence
just means the trivial statement that 11 depends on the type
of the paste, e.g. its solid volume fraction.

(22)

value of

(23)

second

Furthermore the pressure p
tcnsor decomposition for simple

T=-/7I+T

(with t denoting the viscous or dissipative stress tensor)
does not correspond to the thermodynamic pressure any
nlore (i.e. ceases to be determined by an equation of
stattl) but becomcs a hydrostatic pressure of arbitrary
rnagnitude, so that the first r.h.s. term of (19) containing
the unit tensor can be absorbed in it.

Thus the viscctus stress tensor can be written in the
ťollowing 'uvay:

t = Q ,(p, 7, trD2, IIID )D + Q, (p,7, trD2, IIID )D2 (25)

(where the f irst r.h.s. term accounts for shear stresses and
the second fbr normal stresses as can easily be shown fbr
simple shear flow, cť' t1])' As is well known from
experimental rheology normal stress eÍ.fects like the
Barus effect (die-swell) or the Weissenberg effect usually
appear at fiee boundaries. Injection molding on the other
hancl is essentially a process where - apart from the
moving flow front in the mold cavity - free boundaries
are of no intportance. This fact and the regard to the
intended applications of the model in the context of
microstructure fclrmation, which is realized only during
the Ílow in fixed boundaries, give us the right to ignore
the second r.h.s. term of (25). Concerning the third
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equation for linearly viscous fluids) and to assume its
validity fbr general 3-D flow.

We with Íollow a similar scheme here with the only
diff'erence that with respect to the intended experimental
verification of computed results we apply these
rheological models to the special case of unidirectional,
locally simple shear flow, i.e. for the flow situation for
which they were actually designed.

Let us consider unidirectional one-dimensional flow
under a pressure gradient (Poiseuille flow) in a

cy|indrica| tube with constant circular oross-Section (cť.

t'igurc l). This geometry was chosen to allow easy

comparison with the capillary viscometer geometry in

subscquent work I l9], but the treatment of plane
Poiseuille llow (i.e. unidirectional two-dimensional flow)
which.is also of importance in injection molding, would
be entirely analogous.

Figurc L Flow ,qcometry (cylindrical Poiseuille tlow).

In unidirectional one-dimensional cylindrical
Ptliscui||c Ílrlw ttl the radia| ancl angular velocity
ctltnpclncnts vanish' and ťor steady Ílows the axial
vclooity at cach point is only a functicln of the radial

1'rosition. For this situation we can defrne a so-called
shcar rate y, which is the radial gradient of the axial
velocity cornponent:

Such a shear-rate dependence oÍ. the apparent
viscosity of course is one of the most important f'eatures

that can experimentally be observed for various
non-Newtonian fluids and must be taken into account to

describe their behavior. However, nothing has been said
so ťar about the exp|icit form of this dependence. At thls
stage rational deduction ends. The matcrial rnodel is

exactly determined and for the simplified situation tlÍ.

simple shear it is clear how experimental measurements
have to proceed in principle: One has tcl tneusure the

shear rate at certain point and time and the corrcsponding
value of the shear stress in the material at thrs point and

time. Thus fiom a theoretical viewpoint all l'urther
models are redundant, becausc it is principally possible
to determine the flow curve* experimentally to any
desired degree of accuracy t4l

For at least three reasons however it is usel'ul to

adopt one of the well-known empirical rhe olo-sical
morlels to fit the measured flow curvcs :

Adopting a physically rcasoniible nroclcl tnakcs
interpolations (and to a ccrtitin dcgrec
extrapolations) possiblc and thus reduccs thc nuntbcr
ol' experiments needed to determinc thc cornpletc
Ílow curve in thc range oÍ. intercst.
Iť a calculation oÍ-vcIocity profiles is intcncJed' this
task is substantially facilitatcd, when the course o1'

the Ílow curve can be expressed by a sirnple nrtlrjel'
In some cases analytical solutions can bc obtaincd.
Using an appropriate empirical mcldei ťor a cIass oÍ.

similar materials of-fers the possibility to collcct and

compare rheological data oť different SyStemS, c.g.

oeramic in.jection rnoIding pastes wrth di1.Íerent

powder cclntents. with diÍfbrent binder systems or at

diÍ.f-erent temperatures'

A very simple and widely used model in clil'fbrent

fie|ds oť non-Newtonian t1uid dynamios and rheo|ogy is

the so called "power law":

(27) r=Ký, (30)

where K is called coefťicient of consistencv and lt Ílow
index.

For its sirnplicity this equation is one of the Íhvor.itc

equations used in commercial soÍtware pirckages ťor

non-Newtonian fluids without memory and has alstt been

applied to thermoplastrc injection molding mixes LJ,9,
ló]'

As is well knorvn fiom traditional ceramic tcchno-
logy a non-zero value of yield stress is characteristic lor

It is easy to show that in this case (and analogically in
other oases of simple shear flow) the third argument in
(26) reduces to the square of the shear rate defined
zrbove:

2trD2 =
f

t
(28)

so that the apparent viscosity tl in these simple shear

ílows depends on|y on density, temperature and shear
rzrtc. Thus the (one-dimensional) constitutive equation for
the shear stress component T', can be written in the

1<rrm:

T ž Í,,, = n(p, T, Ý )y

We cal| a Ílow curve tlre graplrica| represcntatitln oť thc
one-dimensional constitutive equation an rne asttred b1'

standard methods of experimental rheology. e.g. tlic
capillary viscometer method.
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Steps towards ratknal modelling of ceramic injection molding

classical oeramic mixes containing clay minerals and
cxperience shows that yield phenomena occur also in
ceramic injection molding mixes, The simplest way to
include yield stress in the rheological model is given by
Bingham's equation

r =to + KT , (31)

where T' is the yield stress and K is called plastic
viscosity in this context.

To dcscribe both the non-linear flow curve and the
phcnontena oť yicld stress we prefer the three parameter
Hcrschel-Bulkley model, which can be looked upon as a
cornbination clf the two preceding ones:

T = T,, + Ký' (3z)

Another rnoclel which is sometimes recommended [9] fbr
ceramic injection molding mixes is Casson's model,
which has the advantage of containing only two
parameters:

.,/t=ít., +píy (33)

For a rnore complete list of the possible models the
reader should consult standard textbooks on
non-Newtonian rheology (e.g. [ 1, 22, 23, 28]). It should
be noted that all coefficients (parameters) occurring in
these equations are generally dependent on the density
(.viz, the bulk density, determined e.g. by the solid
volume fraction) and on the temperature of the mix.

By inserting the constitutive equation into the linear
r.nomentum balance (or one of the one-dimensional
rnodcls into the corresponding one-dimensional balance)
a field equation is clbtained that can be solved for certain
boundary conditions in steady processes". Without going
into details here rve think that a Í.ew remarks concernins
the latter might be useful.

For cylindrical Poiseuille flow one boundary
condition is trivially satisfied on grounds of the flow
symmetry. It asserts that at the tube axis the velocity
profile has a tangent plane which is perpendicular to the

{'low direction. In other words, the stress distribution is
continuous at this position and the velocity profile
continuously diÍferentiable (,,smooth'').

The second boundary condition which is usually
assumed asserts that the material does not slip at the wall
during flow. In contrast to the first boundary condition
tnentioned above this second one is by no means obvious
and would principally require experimental verification.
It is generally believed, that for "normal" (i.e. pure small
molecules) fluids real slip cloes not exist and that the
oocurrence o{'wall-slip has nothing to do with the degree
tlÍ.adhesion of a ccrtain material to a specific surfaceI(,.

On the othcr hand it is well known that multiphase fluids
(e.g. suspensions) and polymer solutions can exhibit a

phenomenon reminiscent of wall slip (the so-called
"apparent" or "effective" slip) which is a consequence of
local concentration variations during flow along solid
boundaries [23, 3]. Moreover it seems that in polymer
melts where large macromolecules are present, and the
ratio of molecule size to surface roughness scale is large,
real wall slip does occur 16,24]. Principally these eÍI-ects
cannot be excluded in the systems which are of interest
here. Experience with ceramic mixes has shown however
that for specially prepared internal surfaces of capillaries
(increased roughness by material abrasion) the inÍ-luence
of eÍTective slip flow is So small in the systems
considered that it is not measurable by standard
experiments of paste rheology I l, 19]. It seems therefbre
reasonable to assume the no-slip condition as long as no
plausible and verifiable alternative can be suggested a
priori. If the mathematical flow model based on this
assumption works and is in agreement with
experimentally observed facts to the desired degree of
accuracy, this will be a hint a posteriori that the
assumption was realistic.

SUMMARY AND OUTLOOK

In this paper we presented the theoretical
fundamentals for rational modelling of injection molding
of thermoplastic ceramic pastes. It has been shown that
the central problem at this stage is the choice of a
sufficiently general and complex but reasonably simple
and explicit material model (constitutive equation). This
problem has been solved here by applying the principles
of constitutive theory well-known from rational
thermomechanics (principles of determinism, looal aotion,
differential memory, material objectivity, material
symmetry, cf. e.g. f27,25,26D to the case of typical
ceramic injection molding mixtures and discussing their
relevance for these materials with respect to the intended
applications. For the sake of simplicity the treatmenr in
the present paper has been confined to isothermal
situations. For non-isothennal situations application of the
entropy principle mentioned in section 3 results in certain
restrictions concerning free energy and the'coefficient of
heat conduction if Fourier's law is adopted, but the
coupled problem of solving non-isothermal flow of
non-Newtonian fluids is a highly non-trivial one and
remains to be a subject of future theoretical research.
Certainly it is not a field for merely experimental work
to be done by ceramists.

For non-steady problems initial conditions have to be
considered, too.
Coleman, Markovitz & Noll [4] report that even mercury
does not slip along the smooth walls of a glass capillary
durins t-low.
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A further point might be worth mentioning:

Throughout the paper ceramic injection molding mixes
are treated by a single body continuum approach. With
regard to the multiphase composition of such mixes it

could be desirable to use a multiple body continuum
description that takes into account the individual behavior
of the respective phases. Rational mixture theories offer
a reasonable way to do this [25, 20]. They are widely

applied in soil science, hydrology and geology' and on

their basis it is possible to get a qualitative understanding

of many phenomena observed in the flow of suspensions.

So Í.ar their application to paste flow is not usua| and

quantitative predictions based on these theories are

complicated by serious difficulties in the determination of
individual boundarv conditions for the different
phases [20].

l.
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KRoKY suĚŘulÍcÍ r RnctoNÁt'NÍvt; MoDELovÁNí
INJEKČNÍI]o VSTŘIKOVÁNÍ KERAMIKY

wlLLI PABST. JIŘÍ HAVRDA. EVA GREGoRovÁ

IJstav skla a kerantik.r',

Vvsoká škola chemicko-technologicka v Pra?'e,

Technická 5, 166 28 Prclha

V tomto článku, kteq/ má tvoŤit teoreticky základ dalšíclt
prací a navazujících článkťr zab!vajících se experimerrtální

stránkou problému, se pokoušíme o aplikaci racionálního pŤístupu

na aktuální problematiku poměrně velkého praktického vyznamu.
injekčního vstÍikování keramickych past. Jako typicky rnateriál

si lze pŤedstavit oxidovy prášek s termoplastickfm po.jivem' i

když tento článek podává poněkud širší rozhled a materiálové
modely zde prezentované nevylučují jejich aplikace na .jiné
soustavy.

ZpŮsob popisu Se opírá o mechaniku kontinua a o

racionální termomechaniku (racionální termodynamiku).

Vycházíme zde z popisu kinematiky, Íbmrulujeme |oká|ní

bilanční rovnice a zmíníme se krátce o speciálním postavení

entropické nerovnosti v této teorii.
Centrálním problémem racionálního modelování injekčního

vstÍikování je vlběr vhodného materiálového mode|u' Zvo|eny
materiálovy model ie obecná Newtonská kapalina. Jeho vyhoda

spočívá V tom, že je velice jednoduchy a zároveĎ clovo|u1e popsat

piauc ty jevy, které nás v procesu injekčního vstŤikování zajímají
nejvíce: mez toku a nelineární prriběh tokové kÍivk,rl. odvození
tohoto materiáiového modelu je prováděno krok za krokem
pomocí principŮ konstitutivní teorie. aby bylo vidět roz-sah a

vyznam učiněnych pÍedpoklad pro pÍípad injekčního
vstÍikování keramickych past a je formulováno se snahou docílit
maximální pŤesnosti vyjádÍení bez použití pŤíliš sloŽitéhtt

matematického aparátu'
Možnost experimentálního ověÍení modelu v následuiících

pracích vyžaduje určité idealizace napÍ. ohledně geometrie toku.

i''o Poiseui|letiv válcovy tok i jiné prosté smykové toky
pret.erujeme z drivodrj uvedenych v práci Herschel-Bulkleyuv
model, ktery pÍedstavuje speciální jednorozměrnf pÍípad modelu

obecnych Newtonskych kapalin, ačkoliv se z něho nedá

dedukovat pomocí racionálních principŮ konstitutivní teorie.

Krátká zmínka je věnována složitému problému okra1ovych

podmínek.
Kromě adaptovaného racionálního rámce pro injekční

vstŤikování ie zde uplatněn metodologicky pÍístup aplikovatelny
i na jiné tvarovací procesy keramiky, napÍ. extruzi.
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