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The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel 
method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of 
bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. 
The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings 
contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into 
sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium 
hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial 
properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after 
the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent 
adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of 
nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were 
identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against 
Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed 
for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver 
and silver in combination with brushite.

INTRODUCTION

 With the extending lifespan, congenital defects and 
increasing number of injuries the demand increases for 
development and improvement of materials used mainly 
in surgical procedures. The biomaterials may be metallic, 
plastic, ceramic, glass-ceramic or polymeric in form of 
plates, scaffolds, granules or powders. 
 Many coating methods have been developed to 
take advantage of mechanical properties of metals or 
ceramics and of bioactive properties of the coatings. 
The most frequently used methods include plasma 
spraying [1], electrophoretic [2], magnetron and 
pulsed laser deposition [3, 4]. Another sol-gel method, 
specifically the dip-coating technique, is convenient due 
to its simplicity, low costs and formation of homogenous 
thin coatings on substrates of various shapes. This 
technique ensures overall coverage of the substrate, 
followed by drying and firing. Its major advantage is 
the possibility to form coatings of various thicknesses 
[5-7]. In order to improve bioactivity of the coatings 
mixed silicate-phosphate-calcium sol-gel layers have 
been developed on a titanium alloy [8]. Major attention 
has been paid to sol-gel coatings containing bio-glass, 
known for its high bioactivity [9-13]. Composite 
hydroxyapatite-forsterite bioactive glass coatings on 
stainless steel have been prepared by authors [14].

 Bioactivity of biomaterials and coatings is moni-
tored with in vivo tests (on live organisms) or in vitro 
tests (interaction with simulated body fluid) [15], while 
formation of bone-like hydroxyapatite (HA) on the 
surface of materials/coatings is considered a proof of 
bioactive behavior. By its composition hydroxyapatite is 
close to the mineral part of bones and therefore implanted 
bioactive materials form a direct chemical bond with the 
bone tissue. 
 Apart from bioactivity, antibacterial effect is also 
desirable and therefore silver (Ag) in various forms is 
incorporated into sol-gel coatings as well [16, 17]. The 
effect has been tested with various microorganisms, e.g. 
Escherichia coli (E. coli) and Staphylococcus aureus 
(S. aureus) [18, 19]. The antibacterial effect may be 
influenced by concentration of silver, by the size, shape 
and surface of Ag nanoparticles or by a combination of 
HA powders with silver [20, 21]. Most frequently, the tests 
monitor the number of colonies of surviving bacteria or 
the turbidity of bacterial suspension. Another important 
property of the coatings is their adhesion to substrates, 
which may be measured with a pull-out test, scratch test 
or tape test [22-27]. The adhesion of the coatings may be 
evaluated rather visually than numerically.
 The objective of this work was to prepare thin 
silicate coatings based on TEOS containing Ca-P on 
a titanium substrate using the sol-gel method and 
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dip-coating technique. In the first group the coatings 
contained silver, brushite and monetite (its well-known 
transformation to HA [28]) and in the second group the 
coatings contained dissolved calcium nitrate and triethyl 
phosphate. Another step was to measure their adhesive 
capacity by means of a tape test, their bioactive behavior 
by means of an in vitro test (simulated body fluid, SBF) 
and their antibacterial properties against E. coli.

EXPERIMENTAL

 Titanium substrates (Grade 2, ASTM B 265), sized 
30×10×1 mm, were mechanically treated with SiC 
sand paper No. 500, 600 and washed in acetone in a 
ultrasonic bath for 10 minutes at laboratory temperature 
and subsequently in demineralized water. After drying 
the substrates were chemically treated by leaching 
in concentrated hydrochloric acid (35 %) for 2 hours at 
laboratory temperature and subsequently washed several 
times in demineralized water. After the mechanical 
and chemical treatment they were dried at laboratory 
temperature. The mechanical and chemical treatments 
of the titanium substrates were selected to clean the 
surfaces from impurities and to improve adhesion 
of coatings by increasing roughness of the surface. 
Surfaces of the substrates after the individual treatments 
were measured with the HOMMEL TESTER T1000 
device. The measured length was always 1500 µm and 
each measurement was repeated 3 times on one sample 
[25, 26]. 
 The first group contained four types of silicate sols 
based on TEOS (Tetraethyl orthosilicate, Si(OC2H5)4) 
marked SN, SAN, SANB, SANM, prepared by gradual 
mixing of reagents listed in Table 1. The sols were mixed 
with a magnetic stirrer for 120 minutes and left to age 
for 7 days at laboratory temperature. The aging time is 
important for long-term stability of sols. After the aging 

was completed brushite (CaHPO4.2H2O, Sigma-Aldrich) 
with the average size of particles ∅ 7.9 µm, and mone-
tite (CaHPO4, Merck) with the average size of particles 
∅ 10.4 µm [25, 26] were added into SANB and SANM 
sols. The second group included two types of silicate sols 
based on TEOS, marked SCP-I and SCP-II, prepared by 
gradual mixing of reagents listed in Table 1. Mixing 
with a magnetic stirrer lasted 24 hours at laboratory 
temperature.
 Triton X-100 (Roth) was added in order to increase 
sol viscosity. In order to improve bioactivity of the 
coatings, calcium phosphates were introduced into the 
sols in the first group in form of brushite and monetite 
and into the sols in the second group in form of calcium 
nitrate and triethyl phosphate. Silver nitrate was added 
into the sols in the first group as a carrier of Ag+ which 
has a proven antibacterial effect.
 In order to ensure homogeneity of the sols in 
the first group the coating of titanium substrates was 
performed under conditions of continual stirring in a 
dip-coater at laboratory temperature. The dipping rate 
was 20 cm/min, the withdrawing rate 6 cm/min and the 
dwell time of the substrates in the sols was 30 s. After 
the deposition the coatings in the first group were left 
to dry for 24 hours at laboratory temperature, then 30 
minutes at 60°C and fired at the temperature of 500°C 
for 1 hour, at the heating rate 2°C/min up to 250°C and 
5°C/min up to 500°C. The coatings in the second group 
were fired at the temperature of 600°C for 1 hour, at the 
heating rate 2°C/min. In both cases the cooling occurred 
in the oven until the following day. The identification of 
the coatings was identical with that of the sols used for 
their development.
 Coatings in the first group were subsequently 
chemically treated by leaching in 10 mol.l-1 solution of 
NaOH for 4 hours statically at laboratory temperature. 
The ratio of the substrate surface to the volume of NaOH 
solution was S/V = 0.1 cm-1. The coated surfaces were 

Table 1.  Composition and identification of silicate sols (coatings) in the first and second groups.

                     Composition and identification of sols (coatings)

                               First group                            Second group

Reagents SN SAN SANB SANM SCP-I SCP-II

TEOS 10 ml 10 ml 10 ml 10 ml 13.3 ml 30 ml
1 mol.l-1 HNO3 2 ml 2 ml  2 ml 2 ml – 1 ml
0.1 mol.l-1 HNO3 – – – – 30 ml –
Ethanol 30 ml 30 ml 30 ml 30 ml – 5 ml
AgNO3 – 0.5 g 0.5 g 0.5 g – –
Triton - X100 – – – – 2 ml –
Ca(NO3)2.4H2O – – – – 7.32 g 1.9 g
TEP: (C2H5O)3PO – – – – 0.9 ml 0.5 ml
H2O 2 ml 2 ml 2 ml 2 ml – 2 ml
Brushite  – – 4 g – – –
Monetite  – – – 4 g – –
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rinsed 5 times in demineralized water and left to dry in 
the air until the following day. The purpose of the 
chemical treatment was diffusion of Na+ ions into the 
coating as the ions are expected to support bioactive 
behavior and intentional erosion of the surface to im-
prove the interaction with SBF.
 Adhesion of the coating to the substrate was mea-
sured with a cross-cut tape test under ASTM D 3359-2. 
Cuts were made into the coatings arranged into a lattice 
pattern and a tape (Permacel 99) was applied on the 
area with cuts. The tape was peel off (under the angle of 
180°) and the area with the cuts was evaluated visually 
by comparison with a standard scale. The percentage of 
the peel-off area was determined and the classification 
grade was assigned to it: 0 % = 5, less than 5 % = 4, 
5-15 % = 3, 15-35 % = 2, 35-65 % = 1, over 65 % = 0 
[22, 25, 26]. 
 A test of bioactivity was performed in vitro, by 
static exposure of all coated substrates to simulated 
body fluid (SBF) which simulates the inorganic part of 
blood plasma. The SBF solution was prepared from the 
following reagents: KCl, NaCl, NaHCO3, MgSO4.7H2O, 
CaCl2, KH2PO4. The Tris buffer ((hydroxy methyl) 
aminomethane, NH2C(CH2OH)3) was added to adjust 
pH = 7.5 and azide (NaN3) was added to prevent bacteria 
growth [26]. The ratio of the substrate surface to the 
volume of SBF solution was S/V = 0.1 cm-1. Coated 
substrates were placed into plastic bottles filled with SBF 
and left in a biological thermostat at 37 ± 0.5°C for a 
period of ca. 20 days. Formation of hydroxyapatite on 
surfaces of the coated substrates was monitored. 
 Gram-negative bacteria E. coli (strain DBM 3138) 
was used for the bactericidal test. The bacterial culture 
was incubated in a liquid LB medium (Luria Bertani, 
Sigma Aldrich) at 37°C and 230 rpm for a period of 
18 hours and then it was diluted to the concentration 
of bacteria 104 cfu.ml-1 (colony forming units per 
ml) in physiological solution (9 g l-1 NaCl). The test 
was performed by immersion of coated substrates 
from the first group into 2.5 ml suspension of E. coli 
in physiological solution for a period of 24 hours at 
laboratory temperature. Subsequently, the substrates 
were taken out from the suspension and 100 µl of each 
suspension was spread onto LB agar Petri dish. The agar 
dishes were placed into a biological thermostat set at 
37 ± 0.5°C for a period of 24 hours. After the incuba-tion 
period the dishes were photographed and the numbers 
of colonies of surviving E. coli were counted with NIS 
Elements AR.3 software. The test was repeated 4 times.
 Coated substrate surfaces after the firing, chemical 
treatment in NaOH solution, tape test and in vitro 
test were inspected with an optical microscope (OM, 
Jenapol) with lateral illumination and with an electron 
microscope (SEM, Hitachi S4700 with SDD detector). 
The XRD analysis (PANalytical X´Pert PRO+High 
Score plus) was used to determine the phase composition 
of selected coatings after the in vitro test.

RESULTS AND DISCUSSION

 Figures 1a and 1b show a visible difference in the 
structures of titanium surfaces after the mechanical and 
chemical treatments. A markedly rough surface appeared 
after leaching in concentrated hydrochloric acid, i.e. the 
surface roughness increased (and thus also the surface 
area).
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Figure 1.  (SEM) Surface of titanium substrate after: a) grin-
ding, b) leaching in HCl.
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Figure 2.  Profile comparison of Ti substrates after mechanical 
and chemical treatment.
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 Records from roughness measurements (Figure 2) 
confirmed accentuation of the highest and lowest points 
after the chemical treatment. 
 A sol-gel dip-coating technique was used to create 
silicate coatings on mechanically and chemically treated 

titanium substrates in the first group, based on TEOS 
(SN), containing silver (SAN), silver + brushite (SANB) 
and silver + monetite (SANM); the coatings were dried, 
fired and statically exposed to 10 mol.l-1 solution of 
NaOH and they are shown in Figures 3a-d. Silica coa-

Figure 3.  (SEM) Surface of coatings after treatment in NaOH: a) SN b) SAN, c) SANB, d) SANM.

a) SN

c) SANB

b) SAN

d) SANM

Figure 4.  (SEM) Surface of coatings after firing: a) SCP-I, b) SCP-II.

a) SCP-I b) SCP-II
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ting (Figure 3a) seems to be dense. Small spherical par-
ticles in Figures 3b, c and d are nano-particles of silver 
while bigger white micro-particles of irregular shape in 
Figures 3c and 3d are particles of brushite and monetite. 
Coatings were very thin and they copied the rough 
surface of the substrates. Particles of silver and powders 
were evenly distributed all over the coating surface. 

 Figures 4a and 4b show surfaces of silicate coatings 
from the second group, whose sols contained dissolved 
tetrahydrate of calcium nitrate and triethyl phosphate 
(TEP) in different ratios. The coating SCP-I (Figure 4a), 
which also contained Triton, was more compact, it copied 
the rough surface of the substrate and was without cracks. 
On the contrary, the coating SCP-II (Figure 4b) was 

Figure 5.  (OM) Coatings after tape test: a) SN, b) SAN, c) SANB, d) SANM, e) SCP-I, f) SCP-II.

a) SN

c) SANB

e) SCP-I

b) SAN

d) SANM

f) SCP-II
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crackled all over the surface of the substrate. The cracks 
were longer than 30 µm and mutually interconnected. 
 The adhesion capacity of all the coatings was mea- 
sured with the cross-cut tape test (ASTM D 3359-2) 
and evaluated visually (OM) by comparison with an 
established scale. The monitored indicator was the 
percentage of a scaling surface. Figures 5a through 5f 

show the coatings from both the groups after the tape 
test. After the tape was pulled off the coatings remained 
intact also inside the grid and along the cuts. The adhesion 
capacity of all the silicate coatings was excellent and 
ranked as grade 5.
 Coatings from both the groups were exposed to 
a static in vitro bioactivity test, where we monitored 

Figure 6.  (SEM) Coatings after in vitro test: a) SN, b) SAN, c) SANB, d) SANM, e) SCP-I, f) SCP-II.

a) SN

c) SANB

e) SCP-I

b) SAN

d) SANM

f) SCP-II
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development of bone apatite after the exposure to simu-
lated body fluid. The coatings were investigated with 
electron microscope after 20 days of exposure and 
the results are shown in Figures 6a through 6f. From 
among silicate coatings in the first group, the excellent 
bioactivity was demonstrated by the SAN coating (Figu-
re 6b), which was completely and evenly covered with 
a new, probably hydroxyapatite, phase. Quite surpri-
singly, the coatings containing brushite SANB (Figure 
6c) and monetite SANM (Figure 6d) with multiple huge 
globular clumps of hydroxyapatite nanocrystals on 
the surface demonstrated only partial bioactivity. The 
exposed basic silicate coating SN (Figure 6a) demons-
trated inhomogeneity caused probably by its dissolution 
in SBF. In the second group the partial bioactivity 
was found only for the coating SCP-I (Figure 6e). It 
demonstrated the same behavior as the SANB and SANM 
coatings because a large agglomeration of globules ty-
pical for hydroxyapatite developed on its surface. The 
last coating, SCP-II (Figure 6f), demonstrated the same 
behavior as the SN coating. The surface was visibly 
disrupted, probably due to a large number of fissures 
which appeared after the firing and contributed to its 
partial disruption in SBF.

 An XRD analysis of the SAN coating performed 
after the in vitro test (Figure 7) detected a newly deve-
loped hydroxyapatite phase (Ref. Code 04-009-8846) 
that was partly amorphous. On the surfaces of the SANB, 
SANM and SCP-I coatings there were only islands of 
the new phase that was visually identical with the phase 
on the SAN coating. We therefore anticipate that it was 
probably the same hydroxyapatite as in the case of the 
SAN coating but, due to its small quantity on the surface 
of coatings and due to the low crystallinity, it was not 
detected by XRD analysis.

Figure 8.  Dishes with LB agar after bactericidal test and numbers of colonies of survived E. coli bacteria: a) referent, b) SN, c) 
SAN, d) SANB, e) SANM.

 a) referent b) SN c) SAN

 d) SANB e) SANM
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Figure 7.  XRD difraction pattern for the coating SAN after 
in vitro test.
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 The bactericidal test was performed by dipping 
of all the coated samples from the first group into 
suspension of E. coli in physiological solution with 
the concentration of bacteria 104 cfu.ml-1 for 24 hours. 
Figures 8a through 8e show the representative examples 
of dishes containing LB agar with colonies of surviving 
bacteria. The images were compared with a reference 
sample (Figure 8a, number of colonies of surviving 
bacteria = 1.9×103), which was the same bacterial sus-
pension but without contact with the coated substrate. 
The images positively show that the basic silicate coating 
SN (Figure 8b, number of colonies of surviving bacte- 
ria = 1.8×103) has no antibacterial properties because the 
number of colonies of surviving bacteria is comparable 
with the reference sample. The silicate coating containing 
silver - SAN (Figure 8c) - and the coating containing 
silver and brushite - SANB (Figure 8d) - have similar 
antibacterial properties because the order of colonies 
of surviving bacteria were 101 for both coatings. The 
silicate coating containing silver and monetite - SANM 
(Figure 8e) - caused 100 % death of bacteria under our 
experimental conditions. 
 The role of calcium phosphates, especially monetite, 
in antimicrobial properties of the prepared coatings 
has not been completely clarified. One of the options 
is that calcium phosphates in the sol may react with 
AgNO3 to produce Ag3PO4 [21] (monetite and brushite 
turned yellow during the development of SANB and 
SANM sols) and the product may, e.g. in contact with 
the suspension of E. coli, partly dissolve the coatings 
containing brushite and monetite and this may further 
support release of Ag+ ions into the solution and thus 
improve the antimicrobial properties of silver-containing 
coatings as the antibacterial effects are most frequently 
assigned to the release of Ag+ ions. Another option is 
that the SANB and SANM coatings containing brushite 
and monetite have larger surface areas than the SAN and 
SN coatings. With the same concentration of AgNO3 
in the sols, the availability of silver on the surfaces of 
the prepared coatings with crystals of monetite and 
brushite is higher, the potential of its release as Ag+ is 
also higher and, consequently, the antibacterial effects 
might be higher than in case of coatings containing no 
calcium phosphates. However, a question remains about 
the substantial difference between antibacterial effects 
of brushite and monetite because repeated tests have 
always proven 100 % death of bacteria only in contact 
with the coating containing silver and monetite (SANM). 
The difference between monetite and brushite consists in 
chemically bound water in brushite and slightly different 
surfaces and shapes of their crystals.

CONCLUSION

 The sol-gel method using the dip-coating technique 
was successfully used to prepare two groups of silicate 

coatings on titanium substrates. The adhesive capacity of 
all the coatings was very good and on the classification 
scale it was ranked as grade 5. Nearly all the coatings 
demonstrated bioactivity in static in vitro tests, except 
the basic silicate coating (SN) from the first group and 
the silicate-calcium-phosphate coating (SCP-II) from 
the second group. The silicate coating containing silver 
(SAN) was after the exposure to SBF covered completely 
with a new layer, probably of hydroxyapatite, which was 
confirmed also by XRD analysis. Quite surprisingly, 
the coatings with silver, brushite and monetite from the 
first group and the silicate-calcium-phosphate coating 
(SCP-I) from the second group demonstrated only 
partial bioactivity and hydroxyapatite developed only 
in form of islands of agglomerated spherulites. More in 
vitro tests will be performed under static-dynamic and 
dynamic conditions, where coatings will be in contact 
with always fresh SBF solution. Antibacterial properties 
of coatings from the first group were tested by immersion 
of the coated samples into suspension of E. coli in 
physiological solution. The coating containing silver + 
monetite (SANM) demonstrated excellent antibacterial 
effects with 100 % death of bacteria. Coatings containing 
silver (SAN) and silver + brushite (SANB) demonstrated 
lower antibacterial effects. The basic silicate sol (SN) did 
not have any antibacterial properties. More bactericidal 
tests will be conducted on coatings without silver but 
containing brushite and, particularly, monetite, in order 
to determine the possible effect of powders themselves 
on bacteria. The tests will also investigate coatings with 
various silver contents.
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