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The temperature dependence of impedance spectra of industrially produced (RONA, Lednické Rovne, Slovakia) barium 
crystal glass was studied. The linear dependence of complex impedance on the sample thickness was used for separating the 
bulk dielectric properties from the electrode boundary effects. The temperature dependence of direct current conductivity 
was evaluated from the Nyquist plots. The ZARC circular line was adjusted to the Nyquist plots by the least squares method. 
The distribution of relaxation times in impedance was evaluated this way. More detailed analysis of impedance spectra was 
performed by the equivalent circuit method in capacitance. Four relaxation processes were identified this way.

INTRODUCTION

 The electrical impedance spectra of oxide glasses 
have been studied for decades [1-48]. As far back as 
in 1956, the dielectric relaxation of soda lime silicate 
glass for example, was studied by Taylor [44]. There are 
many types of glasses, where the electrical conduction 
is assumed to be ionic. Here, the best ionic conductors 
seem to be oxide glasses. Electrical conductivity of 
glass depends on alkali oxide content. The mobility of 
alkali ions, when present, is the determining factor. With 
increasing temperature the ionic mobility increases and 
resistivity of glass decreases. The ionic conductivities 
of glasses have been therefore studied extensively [1-4]. 
Many models have been suggested for the ionic con-
ductivities of glasses [5], yet no definite and final, micro-
scopic model exists. Conductivity data are often analyzed 
using the formalism of electrical modulus. In [6, 7], the 
influence of the composition on the conductivity spectra 
of different types of glasses has been studied by using 
complex electrical modulus. In [8] on the other hand, the 
authors studied the possible mechanisms of ion transport 
in sodium diborate glasses, modified by the addition of 
PbO, Bi2O3 and TeO2. They concluded, that the structure 
of glasses significantly influences the conductivity. For 
a systematic study of electrical properties of materials, 
the Electrical Impedance Spectroscopy (EIS) is very 
suitable due to its superior position among other expe-
rimental electrical characterization methods [51, 57]. 
Being nondestructive, it is a very suitable method for 
determination of system’s electrical impedance (resisti-

vity), admittance (conductivity), capacitance (various 
polarization processes), and of many other electrical 
material parameters. Macdonald dealt with the history 
and principles of impedance theory [9-11]. Many various 
glassforming systems were studied using EIS. These in-
clude, for example, soda-lime glass [12, 13], silicate 
glasses [14, 15], TeO2 based glasses [16], borate glasses 
[17], Li2O–B2O3–Dy2O3 glasses [18], MoO3–Fe2O3–P2O5; 
SrO–Fe2O3–P2O5 glasses [19], lithium-indium-phospha-
te glasses [20], lithium borosilicate glasses [21], magne-
sium-telluride glasses [22], TeO2–LiO0,5–LiX (X = F, 
Cl) glassy system [23], SiO2–Li2O:Nd2O3 glasses [24], 
iron oxide doped Na2O–CaO–SiO2 glasses [25], barium 
aluminoborate glasses [26], silicate-phosphate glasses 
[27], vanadium-telluride glasses with low and high con- 
tent of Ag2O and AgI [28], Ag2O–B2O3–P2O5–TeO2 
glasses [29], CaBi2O7 glass [30], and silica-titania 
glasses [31]. The EIS analysis of Bi4TiO3O12 glass [32],  
TeO2–SeO2–Li2O nano glass system [33] and PbO.
Bi2O3·Ga2O3 glass [34] has been also performed.
 The EIS method is also useful for the study of glass 
crystallization kinetics. It is capable of identifying the 
crystallization peaks under small heating rates better than 
DTA technique [35, 36]. It was proven [37] that changes 
in electrical resistivity can identify the crystallization 
peaks in bulk samples of silicate-phosphate glass.
 It seems that the electrical conductivity in oxide 
glasses is related to their dielectric relaxation. Shimi-
kawa [38] for example, proposed a general model for 
the relationship between the dielectric relaxation and 
the electrical conductivity, regardless of the composition 
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of the glass and type of conductive mechanism. The di-
electric relaxation in different types of glass was studied, 
e.g. soda-lime-silicate glass containing small amount 
of Fe2O3 [25], silica glasses [39], SiO2 glass [40], soda-
lime-silicate glass [41], and CaO–Bi2O3–B2O3 glasses 
[42]. With theory and experimental measurements of 
dielectric relaxation in glass dealt in 1974 M. Tomozawa 
[43].
 As can be seen, typically, the two-three component 
glass-forming systems were studied. The present work 
deals with the multicomponent barium crystal glass pro-
duced by RONA glassworks, Lednické Rovne, Slovakia. 
At present, the dielectric properties of domestic glassware 
can be considered as important in connection with broad 
use of microwave ovens in gastronomy.

EXPRIMENTAL

 The barium crystal glass produced by RONA 
glassworks (www.rona.sk) was used in this study. The 
chemical composition of studied glass is listed in the 
Table 1 [49]. Only the main components are given.

 Circular glass samples with the thickness of (0.7, 
1.0, 1.7, and 2.5) mm were cut by diamond saw and 
polished. Masked samples were covered by circular Au 
layer of approximately 300 nm thickness by magne-
tron sputtering performed by sputter coater Bal-Tec 
SCD 500. The diameter of Au electrodes was 16 mm 
from bottom side and 18 mm from upper side. Thus 
the average surface value of 2.278·10-4 m2 was used as 
contact surface A. The impedance spectra were measu- 
red in the frequency range f = (4·10-3∙106) Hz by 
Solartron Analytical Modulab ECS – MTS in configu-
ration MAT+MFRA+MREF+FMA. In this frequency 
range 85 equidistant points (fi, i = 1, 2, … 85) on the 
logarithmic frequency scale were measured. Each sample 
was measured twice in the same prescribed time – tem-
perature regime at temperatures (50, 100, 150, 200, 250, 
300, 350, and 400) °C. The temperature was increased 
to prescribed value by the heating rate of approx. 
0.25 °C∙min-1. After isothermal dwell of 2 hours the 
impedance spectrum was measured. After measurement 
the heating and measurement at next temperature 
followed. After the measurement at 400 °C the sample 
was cooled to the room temperature. After 48 hours 
the measurement was repeated. The average of two 
impedance spectra obtained at each temperature was 
used for the further study.

RESULTS AND DISCUSSION

 The complex impedance Z* = Zre + iZim can be con-
sidered as the sum of the electrode-boundary impedance 
ZA

*   , and the bulk impedance ZB
*  . If the linear dependence 

of bulk impedance on the sample thickness d is assumed, 
then Zre(ω) = Zre,A(ω) + Zre,B(ω) d                (1)

Zim(ω) = Zim,A(ω) + Zim,B(ω) d                (2)

where ω is the angular frequency (ω = 2pf). The values of 
Zre,A(wi) , Zim,A(wi), Zre,B(wi), and Zim,B(wi) were obtained 
by linear regression analysis by minimizing the sum of 
squares of deviations between measured and calculated 
real/imaginary part of impedance for each measured 
angular frequency wi (i = 1, 2, …85):

(3)

where dj = {0.7, 1.0, 1.7, 2.5} mm. 
 The quality of obtained results can be estimated by 
the values of standard deviations s(Zre,A(wi)), s(Zim,A(wi)), 
s(Zre,B(wi)), and s(Zim,B(wi)) obtained as the result of the 
linear regression. As an example the results obtained at 
temperature 250 °C for real and imaginary part of bulk 
impedance are presented in the Figure 1 (the standard 
deviations are plotted as error bars).
 In the next step the bulk impedance was analyzed 
using the Nyquist plots representation -Zim,B = f(Zre,B). 
Despite some its drawbacks that can be found in 
literature [10, 50-53], it has been chosen for the purpose 
of this article, as reasonably illustrative impedance 
representation. Moreover this representation is still 
widely used in the study of dielectric properties of 
oxide glasses. The analyzed data were described by the 
depressed semicircle (so called ZARC circuit) [52, 53]:

(4)

where R is the direct current (DC) bulk resistance, τσε is 
the characteristic bulk conducto-permittivity relaxation 
time, and the exponent α (0 < α ≤ 1) determines the width 
of modeled relaxation time distribution (with decreasing 
α value the width increases). The experimental data 
were fitted by the depressed semicircle by minimizing 
the sum of squares between experimental and calculated 
-Zim,B values. The bulk relaxation time τσε was estimated 
from frequency value, fmax, at which the -Zim,B reaches 
maximum by:

(5)

 The R value was estimated from the endpoint where 
the semicircle reaches the zero Zim value and the α value 
was calculated from the slope of the tangent to the origin 
of the depressed semicircle. This is illustrated in the 
Figure 2 where the Nyquist plot for 150 °C is presented.

Table 1.  The composition (wt. %) of studied barium crystal 
glass.

             Oxide (wt. %)
 SiO2 Na2O K2O CaO Al2O3 BaO ZnO TiO2

 69 10 4 8 1 6  1 1
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 From the resistance R the specific resistance ρDC and 
the conductivity σDC were evaluated:

(6)

where A is the average surface of sputtered electrodes  
(A = 2.278·10-4 m2), d is the sample thickness (i.e. 
0.001 m for data obtained from linear regression of 
complex impedance thickness dependence) and R is 
the DC resistance obtained from the Nyquist plot. The 
obtained results are summarized in the Table 2. As an 
example the Nyquist plots for temperature (50, 100, 200, 
250, 300, and 400) °C are plotted in the Figure 3. It is 
worth noting that the ZARC method can be used even 
in the case when the experimental data form only the 
beginning part of the ZARC semicircle (see T = 50 °C 
in the Figure 3). On the other hand the parameters 
obtained from such data have to be considered as rough 
estimates only (with the exception of the α parameter 
obtained from the tangent to the beginning part of the 
ZARC semicircle).

 The dependence of the natural logarithm of bulk 
relaxation time τσε (in seconds) and of the DC conduc-
tivity σDC (in S∙m-1) is plotted against the reciprocal 
thermodynamic (absolute) temperature, T, in the Figu-
re 4. In both cases the linear dependence is found, 
namely:

(7)

(8)

 The standard deviations of approximation sapr,τ = 
= 0.092, and sapr,σ = 0.044 indicate the ideal linearity 
on the level of experimental noise. This can be seen as 
some kind of validation of results obtained by the ZARC 
method. From the slopes of linear dependencies the same 
values of activation energy were obtained for τσε and σDC:

Eτ
≠ = (104.3 ± 0.7) kJ∙mol-1 = (1.08 ± 0.01) eV        (9)

Eσ
≠ = (104.1 ± 0.4) kJ∙mol-1 = (1.079 ± 0.004) eV    (10)ρ
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Figure 1.  The real (Zre,B) and imaginary (Zim,B) part of bulk impedance.
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Figure 2.  Estimation of R, fmax, and α parameters from the 
ZARC in Nyquist diagram. 

T
12 540 ± 88

ln(τσε) = (–32.40 ± 0.18) +

T
12 525 ± 42

ln(σ
DC

) = (9.89 ± 0.09) –

Table 2.  The results obtained from the Nyquist plots analysis 
– bulk relaxation time τσε, DC conductivity σDC, DC resistance 
ρDC, and parameter α (Equation 4) of the ZARC circuit.

 Temp. τσε σDC ρDC 
α (°C) (s) (S∙m-1) (Ω∙m)

 50≠ 31.75 3.040·10-12 3.289·1011 0.904
 100 3.176 5.541·10-11 1.805·1011 0.859
 150 6.336·10-2 2.617·10-9 3.821·108 0.850
 200 3.176·10-3 6.044·10-8 1.655·107 0.846
 250 2.004·10-4 7.830·10-7 1.277·106 0.847
 300 2.522·10-5 6.276·10-6 1.593·105 0.852
 350 5.033·10-6 3.685·10-5 2.714·104 0.841
 400 1.004·10-6 1.705·10-4 5.864·103 0.820
≠) Only rough estimates of τσε, σDC, and ρDC are reported for 50 °C



Faturíková K., Gavenda T., Liška M., Viščor P.

382 Ceramics – Silikáty  64 (4) 379-386 (2020)

 The ZARC complex impedance (Equation 4) can 
be written also as weighted superposition of Debye-like 
equations:

(11)

where G is the distribution of relaxation time. For given 
τσε and α values, the distribution function G can be obtai-
ned from formulas given in [54, 55]. The distributions 

of relaxation times obtained for α, and τσε parameters 
listed in the Table 2 are plotted in the Figure 5. The 
width of plotted relaxation time distributions is little bit 
increasing with increasing temperature. The analysis of 
the measured impedance data, shown in Figure 1, accor-
ding to the Equation 11 models the system as a series 
of individual impedances of the type, described by the 
Equation 4, with quasi-continual change of characte-
ristic time τσε. In other words, the system under study is 
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Figure 3.  Nyquist plots for temperatures (50, 100, 200, 250, 300, and 400) °C.

f)

d)

b)

e)

c)

a)

Z
B
* (ω) =                      = R ∫                          d ln τ′

1 + (iωτσε)
α

R
1 + iωτ′

G (α, τσε, ln τ′)∞

-∞



Dielectric properties of barium crystal glass

Ceramics – Silikáty  64 (4) 279-386 (2020) 383

assumed to be spatially inhomogeneous, with spatially 
varying DC conductivity σDC and/or permittivity ε. 
According to the glass composition (Table 1), the σDC 
can be related to the ionic conductivity connected with 
the movement of alkali modifying cations (Na+, K+, Ca2+, 
and Ba2+) can be supposed.
 In the next step the RCL analysis of bulk complex 
impedance was performed based on the ”First Principles” 
analysis of the electrical response in condensed phase 

[51]. The numerically calculated electrical impedance 
Z*(ω) in this new type of response analysis can be 
approximated by a simple RCL network, where both 
the topology of the network and the individual R, C, L 
elements in it, are uniquely defined [57]. The topology 
of the resulting R, C, L network in this case is somewhat 
different from the ZARC analysis (Equation 11). Here, 
the system under study is assumed to be spatially 
homogeneous and the response is modeled as a parallel 
combination of a number of various physical processes 
taking place within the bulk of the sample, each physical 
process being represented by one RCL element.
 The parallel arrangement of one resistor (RBulk – DC 
conduction), one capacitor (CBulk – fast polarization) 
and four slow polarization processes (three universal 
capacitances Cuniv – Cole-Cole variety and one Debye-
like Mobile Charge Polarisation capacitance CMCP) were 
sufficient to describe the data at all temperatures com-
pletely. The response of the system can be then formally 
described as an equivalent circuit consisting of parallel 
connection of one resistor, one capacitor and four Cole-
Cole elements (Figure 6).
 Due to character of the impedance data for T = 
= 50 °C only two Cole-Cole elements and for T = 100 °C 
only three Cole-Cole elements were used. Obtained 
results are summarized in the Table 3. The RBulk * CBulk 
relaxation times τσε and specific resistivity ρB can be 
compared with the bulk relaxation time τσε  and the DC 
resistivity ρΒ , obtained from Nyquist plots (Table 2). 
The rough acceptable coincidence can be seen. More-
over the dependence of ln(τσε) vs 1/T (Figure 7) resulted 
in the linear equation:

(12)

with the activation energy value Et
≠ = (105.9 ± 2.7) kJ∙mol-1 

= (1.10 ± 0.03) eV that is practically identical with the 
value obtained for τσε from Nyquist plots. Only the stan-
dard deviation of approximation sapr = 0.34 is significant-
ly higher.
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Figure 7.  Temperature dependence of the bulk relaxation time τσε.Figure 6.  RCL equivalent circuit (CC3 = CMPC).
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 The distribution of relaxation times of Cole-Cole 
elements (Table 3) is plotted in the Figure 8 for all 
tem-peratures. The bulk relaxation time τσε is plotted as 
vertical lines. It can be seen that τσε is related and follows 
temperature dependence of the Cole-Cole 1 dielectric 
relaxation (α-relaxation in literature). This correlation 
between dc conductivity and the main and strongly 
temperature dependent dielectric α-relaxation is known 
as BNN relation and it will be discussed in the next 
publication [56].
 The Cole-Cole 3 relaxation process in Table 3 
(CMCP) is qualitatively different from other Cole-Cole 
relaxation processes. As has been mentioned already 

before, it is not a real dielectric relaxation process, but 
rather a relaxation (electrical charge re-distribution), 
caused by the mobile charges in the system. It is almost 
Debye-like (small-like features at lowest frequencies in 
Figure 8) and the apparent relative dielectric constant 
(Figure 7) is un-physically high (10+3-10+6 ). When 
properly analyzed, it should give the density of mobile 
charges in the studied barium crystal glass.

CONCLUSIONS

 The proposed method of bulk properties separation 
based on the linear thickness dependence of complex im-
pedance resulted in acceptable results mainly in the higher 
frequency region. The results obtained by the analysis of 
Nyquist diagrams resulted in distribution of conducto-
permitivity relaxation time with the distribution width 
slightly increasing with increasing temperature. The RCL 
analysis of bulk impedance spectra reveals four relaxa-
tion processes for temperature above 100 °C (only two 
relaxation processes for 20 °C and three for 100 °C were 
found). Temperature dependences of conducto-permiti-
vity relaxation time obtained by the analysis of Nyquist 
diagrams and by the RCL analysis resulted in the same 
value of activation energy of 104 kJ∙mol-1 (1.10 eV) as 
expected. An interesting finding is a clear correlation 
of the bulk conducto-permittivity relaxation time with 
the “main” dielectric relaxation process, determined 
through RCL analysis. The two types of analysis (ZARC 
impedance analysis and RCL capacitance analysis) lead 
though to two different physical models for the studied 
glass. This aspect of the presented analysis requires 
further study.
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